Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T19:44:07.784Z Has data issue: false hasContentIssue false

A chronology of the Little Ice Age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction

Published online by Cambridge University Press:  20 January 2017

Antoine Rabatel*
Affiliation:
CNRS, Edytem (UMR CNRS-Université de Savoie), Campus Universitaire, 73376 Le Bourget du Lac, France IRD, Great Ice (UR032 IRD), LGGE, 54 rue Molière, 38402 Saint Martin d’Hères, France
Bernard Francou
Affiliation:
IRD, Great Ice (UR032 IRD), Apartado postal 17 12 857 - Whymper 442 y Coruña, Quito, Ecuador
Vincent Jomelli
Affiliation:
CNRS, Great Ice (UR032 IRD), Maison des Sciences de l'Eau, Montpellier, France
Philippe Naveau
Affiliation:
CNRS, LSCE (UMR CNRS-CEA), Gif-sur-Yvette, France
Delphine Grancher
Affiliation:
CNRS, LGP (UMR CNRS-Université de Meudon), Meudon, France
*
*Corresponding author. Laboratoire Edytem, CISM Université de Savoie. Campus scientifique, F-73376 Le Bourget du Lac. E-mail address:[email protected] (A. Rabatel).

Abstract

Dating moraines by lichenometry enabled us to reconstruct glacier recession in the Bolivian Andes since the Little Ice Age maximum. On the 15 proglacial margins studied, we identified a system of ten principal moraines that marks the successive positions of glaciers over the last four centuries. Moraines were dated by performing statistical analysis of lichen measurements based on the extreme values theory. Like glaciers in many mid-latitude mountain areas, Bolivian glaciers reached their maximal extent during the second half of the 17th century. This glacier maximum coincides with the Maunder minimum of solar irradiance. By reconstructing the equilibrium-line altitude and changes in mass-balance, we think the glacier maximum may be due to a 20 to 30% increase in precipitation and a 1.1 to 1.2 °C decrease in temperature compared with present conditions. In the early 18th century, glaciers started to retreat at varying rates until the late 19th to early 20th century; this trend was generally associated with decreasing accumulation rates. By contrast, glacier recession in the 20th century was mainly the consequence of an increase in temperature and humidity. These results are consistent with observations made in the study region based on other proxies.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, A., Francou, B., (1995). Cordillera Blanca, glaciares en la historia.. Bulletin de l'IFEA 24, 3764.Google Scholar
Broggi, J.A., (1945). La desglaciacion actual de los Andes del Peru.. Boletin del Museo de Historia Natural IX 34–35, 222248.Google Scholar
Chepstow-Lusty, A., Frogley, M.R., Bauer, B.S., Bush, M.B., Tupayachi Herrera, A., (2003). A late Holocene record of arid events from the Cuzco region, Peru.. Journal of Quaternary Science 18, (6) 491502.Google Scholar
Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., Le Roy Ladurie, E., (2004). Grape ripening as a past climate indicator.. Nature 432, 289290.Google Scholar
Clapperton, C.M., (1983). The glaciations of the Andes.. Quaternary Science Review 2, 83155.Google Scholar
Cooley, D., Naveau, P., Jomelli, V., Rabatel, A., Grancher, D., (2006). A bayesian hierarchical extreme value model for lichenometry.. Environmetrics 17, 6, 555574.CrossRefGoogle Scholar
Eddy, J.A., (1976). The Maunder minimum.. Science 192, 11891202.CrossRefGoogle ScholarPubMed
Francou, B., (2004). Andes del Ecuador: los glaciares en la epoca de los viajeros (siglos XVIII a XX).. Deler, J.P., Mesclier, E. Los Andes el reto del espacio mundo andino homenaje a Olivier Dollfus IFEA-IEP, Lima., pp. 137152.Google Scholar
Francou, B., Vuille, M., Wagnon, P., Mendoza, J., Sicart, J.E., (2003). Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S.. Journal of Geophysical Research 108, 10.1029/2002JD002959.Google Scholar
Francou, B., Vuille, M., Favier, V., Cáceres, B., (2004). New evidence of ENSO impacts on glaciers at low latitude: Antizana 15, Andes of Ecuador, 0°28'.. Journal of Geophysical Research 109, 10.1029/2003JD004484.Google Scholar
Free, M., Robock, A., (1999). Global warming in the context of the Little Ice Age.. Journal of Geophysical Research 104, (D16) 19,05719,070.CrossRefGoogle Scholar
Gioda, A., Ronchail, J., L'Hote, Y., Pouyaud, B., (2004). Analyse et variabilité temporelle d'une longue série de pluies des Andes en relation avec l'Oscillation Australe (La Paz, 3658 m, 1891–2000).. Demarée, G. Proc. of the 2nd conference on Tropical Climatology, Meteorology and Hydrology. Royal Meteorological Institute of Belgium & ARSOM, 199217.Google Scholar
Gouze, P., Argollo, J., Saliège, J.F., Servant, M., (1986). Interprétation paléoclimatique des oscillations des glaciers au cours des 20 derniers millénaires dans les régions tropicales; exemple des Andes boliviennes.. Comptes Rendus de l'Académie des Sciences 303, 219224.Google Scholar
Grosjean, M., Villalba, R., (2005). Regional multiproxy climate reconstruction for southern South America: a new PAGES initiative.. PAGES News 13, (2) 5.Google Scholar
Gross, G., Kerschner, H., Patzelt, G., (1978). Methodische untersuchungen über die schneegrenze in alpinen gletschergebieten.. Zeischrift für Gletscherkunde und Glazialgeologie Bd. XII, 2, 223251.Google Scholar
Grove, J.M., (1988). The Little Ice Age.. Methuen, London.Google Scholar
Hastenrath, S., (1981). The glaciation of the Ecuadorian Andes.. A.A. Balkema Publishers, Rotterdam.Google Scholar
Hastenrath, S., Ames, A., (1995). Diagnosing the imbalance of Yanamarey Glacier in Cordillera Blanca of Peru.. Journal of Geophysical Research 100, (D3) 51055112.Google Scholar
Hastenrath, S., Polzin, D., Francou, B., (2004). Circulation variability reflected in ice core and lake record of the southern tropical Andes.. Climatic Change 64, 361375.Google Scholar
IPCC, (2001). Climate Change 2001: synthesis Report.. A contribution of working groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Watson, R.T. and the Core Writing Team (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA., 398 p.Google Scholar
Jomelli, V., Grancher, D., Naveau, P., Cooley, D., Brunstein, D., (2007). Assessment study of lichenometric methods for dating surfaces.. Geomorphology 86, 1–2, 131–143.CrossRefGoogle Scholar
Jomelli, V., Grancher, D., Brunstein, D., Solomina, O., in press. Recalibration of the yellow Rhizocarpon growth curve in the Cordillera Blanca (Peru) and implications for LIA chronology, Geomorphology.Google Scholar
Kaser, G., (1999). A review of the modern fluctuations of tropical glaciers.. Global and Planetary Change 22, 93103.Google Scholar
Kaser, G., (2001). Glacier climate interaction at low latitudes.. Journal of Glaciology 47, 157, 195204.Google Scholar
Kinzl, H., (1965). La glaciacion actual y pleistocenica en los Andes centrals.. Boletin de la Sociedad Geografica de Lima 89, 89100.Google Scholar
Kraus, E.B., (1955). Secular changes of tropical rainfall regimes.. Quarterly Journal of the Royal Meteorological Society 81, 198210.Google Scholar
Lean, J., Rind, D., (1998). Climate forcing by changing Solar Radiation.. Journal of Climate 11, 30693094.Google Scholar
Le Roy Ladurie, E., (2004). Histoire humaine et comparée du climat.. Canicules et glaciers 13e 18e. siècle. Fayard, Paris.Google Scholar
Liu, K.B., Reese, C.A., Thompson, L.G., (2005). Ice-core pollen record of climatic changes in the central Andes during the last 400 years.. Quaternary Research 64, (2) 272278.Google Scholar
Lliboutry, L., Morales Arnao, B., Schneider, B., (1977). Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru.. III. Study of moraines and mass balances at Safuna. Journal of Glaciology 18, 275290.Google Scholar
Luckman, B.H., (2000). The Little Ice Age in the Canadian Rockies.. Geomorphology 32, 357384.Google Scholar
Luckman, B.H., Villalba, R., (2001). Assessing the synchronicity of glacier fluctuations in the western Cordillera of the Americas during the last millennium.. Markgraf, V. Inter-Hemispheric Climate Linkages Academic Press, San Diego., pp. 119140.Google Scholar
Matthes, F., (1939). Report of committee on glaciers.. Transactions American Geophysical Union 20, 518535.Google Scholar
Moberg, A., Dmitry, M.S., Karin, H., Nina, M.D., Wibjorn, K., (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data.. Nature 433, 613617.Google Scholar
Naveau, P., Nogaj, M., Ammann, C., Yiou, P., Cooley, D., Jomelli, V., (2005). Statistical methods for the analysis of climate extremes.. Comptes Rendus Géoscience 337, 10–11, 1013–1022.Google Scholar
Naveau, P., Jomelli, V., Cooley, D., Grancher, D., Rabatel, A., (2007). Modelling uncertainties in lichenometry studies.. Arctic Antarctic and Alpine Research 39, (2) 277285.CrossRefGoogle Scholar
Nesje, A., Dahl, S.O., (2000). Glaciers and environmental change.. Arnold, London.Google Scholar
Nesje, A., Dahl, S.O., (2003). The Little Ice Age, only temperature?.. The Holocene 13, 139145.CrossRefGoogle Scholar
Peterson, J.A., Peterson, L.F., (1994). Ice retreat from the neoglacial maxima in the Puncak Jayakesuma area, Republic of Indonesia.. Zeitschrift für Gletscherkunde und Glazialgeologie 30, 19.Google Scholar
Pflücker, L., (1905). Informe sobre los yacimientos auriferos de Sandia.. Bol. del Cuerpo de Ingenieros de Minas del Perù, Lima 26.Google Scholar
Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V., Bradley, R.S., (2006). Solar modulation of Little Ice Age climate in the tropical Andes.. Proceedings of the National Academy of Sciences 103, (24) 89378942.Google Scholar
Rabatel, A., (2005). Chronologie et interprétation paléoclimatique des fluctuations des glaciers dans les Andes de Bolivie (16°S) depuis le maximum du Petit Age Glaciaire (17ème siècle). Ph. D. Thesis. IRD, CNRS, University Joseph Fourier, Grenoble., 194p.Google Scholar
Rabatel, A., Jomelli, V., Naveau, P., Francou, B., Grancher, D., (2005). Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16°S.. Comptes Rendus Géoscience 337, (15) 13111322.CrossRefGoogle Scholar
Rabatel, A., Machaca, A., Francou, B., Jomelli, V., (2006). Glacier recession on the Cerro Charquini (Bolivia 16°S) since the maximum of the Little Ice Age (17th century).. Journal of Glaciology 52, (176) 110118.Google Scholar
Ramirez, E., Francou, B., Ribstein, P., Descloitres, M., Guérin, R., Mendoza, J., Gallaire, R., Pouyaud, B., Jordan, E., (2001). Small glacier disappearing in the tropical Andes: a case study in Bolivia: Glaciar Chacaltaya (16°S).. Journal of Glaciology 47, (157) 187194.CrossRefGoogle Scholar
Rind, D., Shindell, D., Perlwitz, J., Lerner, J., Lonergan, P., Lean, J., McLinden, C., (2004). The relative importance of solar and anthropogenic forcing of climate change between the Maunder minimum and the present.. Journal of Climate 17, 906929.Google Scholar
Rodbell, D.T., (1992). Lichenometric and radiocarbon dating of Holocene glaciation, Cordillera Blanca, Peru.. The Holocene 2, 1929.Google Scholar
Schubert, C., (1972). Geomorphology and glacier retreat in the Pico Bolivar area.. Zeitschrift für Gletscherkunde und Glazialgeologie 8, 189202.Google Scholar
Sicart, J.E., (2002). Contribution à l'étude des flux d'énergie, du bilan de masse et du débit de fonte d'un glacier tropical: la Zongo, Bolivie.. PhD Thesis, UPMC. Paris. VI, 333 p.Google Scholar
Solomina, O., Jomelli, V., Kaser, G., Ames, A., Berger, B., Pouyaud, B., (2007). Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology.. Global and Planetary Change 59, (1–4) 225235.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Koci, J.F., (1985). A 1500-years record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru.. Science 229, 971973.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Dansgaard, W., Grootes, P.M., (1986). The LIA as recorded in the stratigraphy of the tropical Quelccaya Ice Cap.. Science 234, 361364.Google Scholar
Torrence, C., Webster, P.J., (1999). Interdecadal changes in the ENSO-monsoon system.. Journal of Climate 12, 26792690.Google Scholar
Usoskin, I.G., Mursula, K., Kovaltsov, G.A., (2002). Lost sunspot cycle in the beginning of Dalton minimum: new evidence and consequences.. Geophysical Research Letters 29, 36-1–36-4.Google Scholar
Valero-Garces, B.L., Delgado-Huertas, A., Navas, A., Edwards, L., Schwalb, A., Ratto, N., (2003). Patterns of regional hydrological variability in central-southern Altiplano (18°–26°S) lakes during the last 500 years.. Palaeogeography, Palaeoclimatoligy, Palaeoecology 194, 319338.Google Scholar
Vuille, M., Bradley, R.S., (2000). Mean annual temperature trends and their vertical structure in the tropical Andes.. Geophysical Research Letters 27, 38853888.Google Scholar
Vuille, M., Bradley, R.S., Werner, M., Keimig, F., (2003). 20th century climate change in the tropical Andes: observations and model results.. Climatic Change 59, 7599.Google Scholar
Wagnon, P., Ribstein, P., Francou, B., Pouyaud, B., (1999). Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia.. Journal of Geophysical Research 104, 39073923.Google Scholar
Wagnon, P., Ribstein, P., Francou, B., Sicart, J.E., (2001). Anomalous heat and mass balance budget of Glaciar Zongo, Bolivia, during the 1997/98 El Nino year.. Journal of Glaciology 47, 156, 2128.Google Scholar
Winkler, S., (2004). Lichenometric dating of the Little Ice Age maximum in Mt Cook National Park, Southern Alps, New Zealand.. The Holocene 14, 911920.Google Scholar
Zumbühl, H.J., Holzhauser, H., (1988). Glaciers des Alpes du Petit Age Glaciaire.. Numéro spécial de la revue Les Alpes 3, 129322.Google Scholar