Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T05:21:53.693Z Has data issue: false hasContentIssue false

A chironomid-based reconstruction of late glacial summer temperatures in the southern Carpathians (Romania)

Published online by Cambridge University Press:  20 January 2017

Mónika Tóth*
Affiliation:
Hungarian Academy of Sciences, Balaton Limnological Research Institute, Klebelsberg Kuno 3, HU-8237 Tihany, Hungary
Enikő K. Magyari
Affiliation:
HAS-NHMUS Research group for Paleontology, HU-1476 Budapest, P.O. Box 222, Hungary
Stephen J. Brooks
Affiliation:
Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
Mihály Braun
Affiliation:
University of Debrecen, Department of Inorganic and Analytical Chemistry, HU-4010 Debrecen, P.O. Box 21, Hungary
Krisztina Buczkó
Affiliation:
Department of Botany, Hungarian Natural History Museum, HU-1476 Budapest, P.O. Box 222, Hungary
Miklós Bálint
Affiliation:
Biodiversit"t und Klima Forschungszentrum (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Molecular Biology Center, Babeş-Bolyai University, Treboniu Laurian 42, 400271 Cluj, Romania
Oliver Heiri
Affiliation:
Institute of Environmental Biology, Utrecht University, Budapestlaan 4, CD-3584 Utrecht, The Netherlands Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
*
*Corresponding author. E-mail address:[email protected] (M. Tóth).

Abstract

Late glacial and early Holocene summer temperatures were reconstructed based on fossil chironomid assemblages at Lake Brazi (Retezat Mountains) with a joint Norwegian"Swiss transfer function, providing an important addition to the late glacial quantitative climate reconstructions from Europe. The pattern of the late glacial temperature changes in Lake Brazi show both similarities and some differences from the NGRIP δ18O record and other European chironomid-based reconstructions. Our reconstruction indicates that at Lake Brazi (1740 m a.s.l.) summer air temperature increased by ~ 2.8ºC at the Oldest Dryas/Bølling transition (GS-2/GI-1) and reached 8.1–8.7ºC during the late glacial interstade. The onset of the Younger Dryas (GS-1) was characterized by a weak (< 1ºC) decrease in chironomid-inferred temperatures. Similarly, at the GS-1/Holocene transition no major changes in summer temperature were recorded. In the early Holocene, summer temperature increased in two steps and reached ~ 12.0–13.3ºC during the Preboreal. Two short-term cold events were detected during the early Holocene between 11,480–11,390 and 10,350–10,190 cal yr BP. The first cooling coincides with the Preboreal oscillation and shows a weak (0.7ºC) temperature decrease, while the second is characterized by 1ºC cooling. Both cold events coincide with cooling events in the Greenland ice core records and other European temperature reconstructions.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke jr., R.A., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., Wallace, J.M., (2003). Abrupt climate change. Science 299, 20052010.CrossRefGoogle ScholarPubMed
Bennett, K.D., http://chrono.qub.ac.uk/psimpoll/psimpoll.html.Google Scholar
Birks, H.J.B., (1995). Quantitative paleoenvironmental reconstructions. Maddy, D., Brew, J.S., Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge. 161254.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B., Members, I.N.T.I.M.A.T.E., (1998). An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283292.3.0.CO;2-A>CrossRefGoogle Scholar
Björck, S., Muscheler, R., Kromer, B., Andresen, C.S., Heinemeier, J., Johnsen, S.J., Conley, D., Koç, N., Spurk, M., Veski, S., (2001). High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology 29, 11071110.2.0.CO;2>CrossRefGoogle Scholar
Brodin, Y.-W., Gransberg, M., (1993). Responses of insects, especially Chironomidae (Diptera), and mites to 130 years of acidification in a Scottish lake. Hydrobiologia 250, 201212.CrossRefGoogle Scholar
Brooks, S.J., (2006). Fossil midges (Diptera: Chironomidae) as paleoclimatic indicators for the Eurasian region. Quaternary Science Reviews 25, 18941910.CrossRefGoogle Scholar
Brooks, S.J., Birks, H.J.B., (2000). Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. Journal of Paleolimnology 23, 7789.CrossRefGoogle Scholar
Brooks, S.J., Birks, H.J.B., (2001). Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20, 17231741.CrossRefGoogle Scholar
Brooks, S.J., Langdon, P.G., Heiri, O., (2007). The identification and use of Palaearctic Chironomidae larvae in paleoecology. QRA Technical Guide No. 10, Quaternary Research Association, London. 276 pp.Google Scholar
Buczkó, K., Magyari, E., Soróczki-Pintér, É., Hubay, K., Braun, M., Bálint, M., (2009). Diatom-based evidence for abrupt climate changes during the Lateglacial in the South Carpathian Mountains. Central European Geology 52, 249268.CrossRefGoogle Scholar
Constantin, S., Bojar, A.-V., Lauritzen, S.-E., Lundberg, J., (2007). Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (southern Carpathians, Romania). Paleogeography, Paleoclimatology, Paleoecology 243, 322338.CrossRefGoogle Scholar
Eggermont, H., Heiri, O., in press. The chironomid-temperature relationship: expression in nature and paleoenvironmental implications. Biological Reviews (to be submitted by July 11 2011).CrossRefGoogle Scholar
Feurdean, A., Wohlfarth, B., Björkman, L., Tantau, I., Bennike, O., Willis, K.J., Farcas, S., Robertsson, A.M., (2007). The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Paleobotany and Palynology 145, 305320.CrossRefGoogle Scholar
Feurdean, A., Klotz, S., Brewer, S., Mosbrugger, V., Tămaş, T., Wohlfarth, B., (2008a). Lateglacial climate development in NW Romania–comparative results from three quantitative pollen-based methods. Paleogeography, Paleoclimatology, Paleoecology 265, 121133.CrossRefGoogle Scholar
Feurdean, A., Klotz, S., Mosbrugger, V., Wohlfarth, B., (2008b). Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Paleogeography, Paleoclimatology, Paleoecology 260, 494504.CrossRefGoogle Scholar
Gannon, J.E., (1971). Two counting cells for the enumeration of zooplankton micro-crustacea. Transaction of the American Microscopical Society 90, 486490.CrossRefGoogle Scholar
Grimm, E.C., (1991). TILIA and TILIAGRAPH Software. Illinois State Museum, .Google Scholar
Heiri, O., Lotter, A.F., (2001). Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, 343350.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., (2005). Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34, 506516.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., (2010). How does taxonomic resolution affect chironomid-based temperature reconstruction?. Journal of Paleolimnology 44, 589601.CrossRefGoogle Scholar
Heiri, O., Millet, L., (2005). Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). Journal of Quaternary Science 20, 3344.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Hausmann, S., Kienast, F., (2003). A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13, 477484.CrossRefGoogle Scholar
Heiri, O., Tinner, W., Lotter, A.F., (2004). Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America 101, 1528515288.CrossRefGoogle ScholarPubMed
Heiri, O., Filippi, M.L., Lotter, A.F., (2007). Lateglacial summer temperature in the Trentino area (Northern Italy) as reconstructed by fossil chironomid assemblages in Lago di Lavarone (1100 ma.s.l.). Studi Trentini di Scienze Naturali. Acta Geologica 82, 299308.Google Scholar
Heiri, O., Brooks, S.J., Birks, H.J.B., Lotter, A.F., in press. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews. doi:10.1016/j.quascirev.2011.09.006.CrossRefGoogle Scholar
Henrikson, L., Olofsson, J.B., Oscarson, H.G., (1982). The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86, 223229.CrossRefGoogle Scholar
Ilyashuk, B., Gobet, E., Heiri, O., Lotter, A.F., van Leeuwen, J.F.N., van der Knaap, W.O., Ilyashuk, E., Oberli, F., Ammann, B., (2009). Lateglacial environmental and climatic changes at the Maloja Pass, Central Swiss Alps, as recorded by chironomids and pollen. Quaternary Science Reviews 28, 13401353.CrossRefGoogle Scholar
Jancsik, P., (2001). A Retyezát-hegység (The Retezat Mountains). Pallas-Akadémia Könyvkiadó, Csíkszereda. 140 pp.Google Scholar
Juggins, S., (2007). C2 Version 1.5 User guide. Software for ecological and paleoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK. 73 pp.Google Scholar
Kern, Z., Balogh, D., Nagy, B., (2004). Investigations for the actual elevation of the mountain permafrost zone on postglacial landforms in the head of Lăpuşnicu Mare Valley, and the history of deglaciation of Ana Lake—Judele Peak region, Retezat Mountains, Romania. Analele Universităţii de Vest din Timişoara, Geografie 14, 119132.Google Scholar
Kern, Z., László, P., (2010). Size specific steady-state accumulation-area ratio: an improvement for equilibrium-line estimation of small paleoglaciers. Quaternary Science Reviews 29, 1920.CrossRefGoogle Scholar
Lang, B., Bedford, A., Brooks, S.J., Jones, R.T., Richardson, N., Birks, H.J.B., Marshall, J.D., (2010). Early-Holocene temperature variability inferred from chironomid assemblages at Hawes Water, northwest England. The Holocene 20, 6, 943954.CrossRefGoogle Scholar
Larocque, I., Hall, R.I., (2003). Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. Journal of Paleolimnology 29, 475493.CrossRefGoogle Scholar
Larocque, I., Finsinger, W., (2008). Late-glacial chironomid-based temperature reconstruction for Lago Piccolo di Avigliana in the southwestern Alps (Italy). Paleogeography, Paleoclimatology, Paleoecology 257, 207223.CrossRefGoogle Scholar
Larocque, I., Hall, R.I., Grahn, E., (2001). Chironomids as indicators of climate change: a 100-lake training set from subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26, 307322.CrossRefGoogle Scholar
Larocque, I., Grosjean, M., Heiri, O., Bigler, C., Blass, A., (2009). Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. Journal of Paleolimnology 41, 329342.CrossRefGoogle Scholar
Larocque-Tobler, I., Heiri, O., Wehrli, M., (2010). Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids. Journal of Paleolimnology 43, 649666.CrossRefGoogle Scholar
Lotter, A.F., Eicher, U., Birks, H.J.B., Siegenthaler, U., (1992). Late Glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7, 187204.Google Scholar
Lotter, A.F., Birks, H.J.B., Hofmann, W., Marchetto, A., (1997). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18, 395420.CrossRefGoogle Scholar
Magyari, E.K., Braun, M., Buczkó, K., Kern, Z., László, P., Hubay, K., Bálint, M., (2009a). Radiocarbon chronology and basic characteristics of glacial lake sediments in the Retezat Mts (S Carpathians, Romania): a window to Lateglacial and Holocene climatic and paleoenvironmental changes. Central European Geology 52, 225248.CrossRefGoogle Scholar
Magyari, E., Jakab, G., Braun, M., Buczkó, K., Bálint, M., (2009b). High-resolution study of Late Glacial and Early Holocene tree line changes in the southern Carpathian Mountains. Geophysical Research Abstracts 11, EGU2009EGU10549.Google Scholar
Ortu, E., Brewer, S., Peyron, O., (2006). Pollen-inferred paleoclimate reconstructions in mountain areas: problems and perspectives. Journal of Quaternary Science 21, 615627.CrossRefGoogle Scholar
Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Magny, M., Millet, L., Ruffaldi, P., van Campo, E., Yu, G., (2005). Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids. Quaternary Research 64, 197211.CrossRefGoogle Scholar
Pinder, L.C.V., (1986). Biology of freshwater Chironomidae. Annual Review of Entomology 31, 123.CrossRefGoogle Scholar
Pop, G., (1988). Introducere în meteorologie şi climatologie. Editura Ştiinifică şi Enciclopedică, Bucureşti.Google Scholar
Popa, I., Kern, Z., (2009). Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Climate Dynamics 32, 11071117.CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., Ruth, U., (2006). A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102 http://dx.doi.org/10.1029/2005JD006079CrossRefGoogle Scholar
Renssen, H., Isarin, R.F.B., (2001). The two major warming phases of the last deglaciation at 14.7 and 11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Global and Planetary Change 30, 117153.CrossRefGoogle Scholar
Reuther, A.U., Urdea, P., Geiger, C., Ivy-Ochs, S., Niller, H.P., Kubik, P.W., Heine, K., (2007). Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quaternary International 164–165, 151169.CrossRefGoogle Scholar
Rieradevall, M., Brooks, S.J., (2001). An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25, 8199.CrossRefGoogle Scholar
Stefanova, I., Ognjanova-Rumenova, N., Hofmann, W., Ammann, B., (2003). Late Glacial and Holocene environmental history of the Pirin Mountains (SW Bulgaria): a plaleolimnological study of Lake Dalgato (2310 m). Journal of Paleolimnology 30, 95111.CrossRefGoogle Scholar
Tămaş, T., Onac, B.P., Bojar, A.-V., (2005). Lateglacial–Middle Holocene stable isotope records in two coeval stalagmites from the Bihor Mountains, NW Romania. Geological Quarterly 49, 185194.Google Scholar
Tantau, I., Reille, M., Beldean, C., Farcas, S., de Beaulieu, J.-L., (2009). Late glacial vegetation development in the Fagaras depression. Contributii Botanice 44, 141150.Google Scholar
ter Braak, C.J.F., Šmilauer, P., (1998). Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, New York.Google Scholar
ter Braak, C.J.F., Juggins, S., (1993). Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270, 485502.CrossRefGoogle Scholar
Urdea, P., (2004). The Pleistocene glaciation of the Romanian Carpathians. Ehlers, J., Gibbard, P.L., Quaternary Glaciations – Extent and Chronology, Part 1 Europe. Elsevier, Amsterdam. 301308.Google Scholar
Walker, I.R., Smol, J.P., Engstrom, D.R., Birks, H.J.B., (1991). An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48, 975987.CrossRefGoogle Scholar
Walker, I.R., Levesque, J.A., Cwynar, L.C., Lotter, A.F., (1997). An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. Journal of Paleolimnology 18, 165178.CrossRefGoogle Scholar
Wiederholm, T., (1983). Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplement 19, 1457.Google Scholar
Willis, K.J., Sümegi, P., Braun, M., Tóth, A., (1995). The late Qarternary environmental history of Bátorliget, NE Hungary. Paleogeography, Paleoclimatology, Paleoecology 118, 2547.CrossRefGoogle Scholar