Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T18:47:53.835Z Has data issue: false hasContentIssue false

Characteristics, nature, and formation of palaeosurfaces within dunes on Fuerteventura

Published online by Cambridge University Press:  31 October 2018

Christopher-Bastian Roettig*
Affiliation:
Dresden University of Technology, Department of Geography, 01069 Dresden, Germany
György Varga
Affiliation:
Hungarian Academy of Sciences, Geographical Institute, 1245 Budapest, Hungary
Daniela Sauer
Affiliation:
University of Göttingen, Department of Geography, 37073 Göttingen, Germany
Thomas Kolb
Affiliation:
University of Bayreuth, Department of Geography, 95440 Bayreuth, Germany
Daniel Wolf
Affiliation:
Dresden University of Technology, Department of Geography, 01069 Dresden, Germany
Vera Makowski
Affiliation:
Dresden University of Technology, Department of Geography, 01069 Dresden, Germany
José Manuel Recio Espejo
Affiliation:
University of Cordoba, Ecology (Physical Environment-Geomorphology), 14071 Córdoba, Spain
Ludwig Zöller
Affiliation:
University of Bayreuth, Department of Geography, 95440 Bayreuth, Germany
Dominik Faust
Affiliation:
Dresden University of Technology, Department of Geography, 01069 Dresden, Germany
*
*Corresponding author at: Dresden University of Technology. E-mail address: [email protected].

Abstract

The appearances of palaeosurfaces intercalated into palaeo-dune fields on Fuerteventura are multifaceted. Although reddened layers in these dune sediments might suggest that strong soil-formation processes have taken place, the combination of aridity and parent material, namely biogenic carbonate sand of shelf origin, reveals that strong soil formation seems unlikely. These sediments rather represent de- and recalcification processes only. Solely in the case of admixed material of volcanic origin and dust deposits further soil-forming processes seem to be possible. Hematite-rich Saharan dust contributes to reddish colouration of the palaeosurfaces. In addition, CaCO3-coated iron particles appear to be ingredients of dust being leached after deposition and transformed to hematite. Overall, we propose much weaker soil-forming processes during the Pleistocene than previously postulated. Our findings support the relevance of local environments. Carbonate sands of shelf origin hinder strong soil formation and the reddish layers separating dune generations are palaeosurfaces, which mainly consist of Saharan dust. After deposition of allochthonous material, these layers are overprinted by weak soil-forming processes. The formation of palaeosurfaces primarily depends on morphodynamically stable periods during limited sand supply. Our data suggest a cyclicity of processes in the following order: (1) sand accumulation, (2) dust accumulation and weak soil formation, and (3) water-induced erosion. For the Canary Islands, we support the assumption of glacial maxima being periods of increased levels of moisture. In combination with rising sea level, we propose that favorable conditions of surface stability occur immediately after glacial maxima during periods of starting transgression, whereas regression periods immediately after sea-level high stands seem to yield the highest sand supply for the study area.

Type
Thematic Set: Drylands
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Monem, A., Watkins, N.D., Gast, P.W., 1971. Potassium-argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary Islands: Lanzarote, Fuerteventura, Gran Canaria and La Gomera. American Journal of Science 271, 490521.Google Scholar
Ad-hoc Arbeitsgruppe Boden. 2005. Bodenkundliche Kartieranleitung KA 5. E. Schweizerbartsche Verlagsbuchhandlung, Hannover.Google Scholar
Alcántara-Carió, J., Fernández-Bastero, S., Alonso, I., 2010. Source area determination of aeolian sediments at Jandia Isthmus (Fuerteventura, Canary Islands). Journal of Marine Systems 80, 219234.Google Scholar
Alonso, I., Hernández, L., Alcántara-Carrió, J., Cabrera, L., Yanes, A., 2011. Los grandes campos de dunas actuales de Canarias. In: Sanjaume, E., Gracia, J. (Eds.), Las dunas en España. Sociedad Espanola de Geomorfología, Puerto Real, Cádiz, pp. 103118.Google Scholar
Andreucci, S., Bateman, M.D., Zucca, C., Kapurs, S., Aksit, I., Dunalko, A., Pascucci, V., 2012. Evidence of Saharan dust in upper Pleistocene reworked palaeosols of North-west Sardinia, Italy: palaeoenvironmental implications. Sedimentology 59, 917–938.Google Scholar
Ball, M.M., 1967. Carbonate sand bodies of Florida and the Bahamas. Journal of Sedimentary Petrology 37, 556591.Google Scholar
Bouab, N., Lamothe, M., 1997. Geochronological framework for the Quaternary palaeoclimate record of the Rosa Negra section (Fuerteventura – Canary Islands, Spain). In: Meco, J., Petit-Maire, N. (Eds.), Climates of the Past: Proceedings of the CLIP Meeting held June 2–7, 1995 — Lanzarote und Fuerteventura (Canary Islands, Spain). IUGS-UNESCO, Las Palmas de Gran Canaria, pp. 37–42.Google Scholar
Brindley, G.W., Brown, G., 1980. Crystal Structures of Clay Minerals and Their X‐Ray Identification. Mineralogical Society No. 5, London, pp. 495.Google Scholar
Bretz, J.H., 1960. Bermuda, a partially drowned, late mature, Pleistocene karst. Geological Society of America Bulletin 71, 17291754.Google Scholar
Brooke, B., 2001. The distribution of carbonate eolianite. Earth-Science Reviews 55, 135–762 164.Google Scholar
Bush, A.B.G., Philander, S.G.H., 1999. The climate of the Last Glacial Maximum: results from a coupled atmosphere-ocean general circulation model. Journal of Geophysical Research 104, 2450924525.Google Scholar
Casquet, C., Ibarrola, E., Fúster, J.M., Ancochea, E., Cantagrel, J.M., Jamond, C., Cendrero, A., Diaz de Teran, J.R., Hernan, F., 1989. Cronología de la Serie I de Fuerteventura. 130–131. In: Araña, V. (coordinador). Esf Meeting on Canarian Volcanism (Lanzarote, November–December 1989). European Science Foundation, Madrid. 367 pages.Google Scholar
Coello, J., Cantagrel, J.-M., Hernan, E., Foster, J.M., Ibarrola, E., Ancochea, E., Casquet, C., Jamond, C., Diaz De Teran, J.-R., Cendrero, A., 1992. Evolution of the eastern volcanic ridge of the Canary Islands based on new K-Ar data. Journal of Volcanology and Geothermal Research 532, 251274.Google Scholar
Cooperative Holocene Mapping Project (COHMAP) Members, 1988. Climatic Changes of the Last 18,000 Years: observations and Model Simulations. Science 241, 10431052.Google Scholar
Coudé-Gaussen, G., Rognon, P., 1988. Origine eolienne de certains encroutements calcaires sur l’ile de Fuerteventura (Canaries Orientales). Geoderma 42, 271293.Google Scholar
Coudé-Gaussen, G., Rognon, P., Bergametti, G., Gomes, L., Strauss, B., Gros, J.M., Le Coustumer, M.N., 1987. Saharan dust on Fuerteventura Island (Canaries): Chemical and mineralogical characteristics, air mass trajectories, and probable sources. Journal of Geophysical Research 92, 97539771.Google Scholar
Criado, C., Dorta, P., 2003. An unusual blood rain on the Canary Islands: the storm of January 1999. Journal Arid Environment 55, 765783.Google Scholar
Criado, C., Guillo, H., Hansen, A., Hansen, C., Lillo, P., Torres, J.M., Naranjo, A., 2004. Geomorphological evolution of Parque Natural de Las Dunas de Corralejo (Fuerteventura, Canary Island). In: Benito, G., Díez Herrero, A. (Eds.), Contribuciones recientes sobre geomorfología. Sociedad Espanola de Geomorfología, Madrid.Google Scholar
Criado, C., Naranjo, A., 2011. Geomorfología y Paisaje en La Oliva. In: Lobo Cabrera, M. (Ed.), La Oliva Historia de un pueblo de Fuerteventura. Ayuntamiento de La Oliva, La Oliva, Spain, pp. 1344.Google Scholar
Criado, C., Torres, J.M., Hansen, A., Lillo, P., Naranjo, A., 2012. Intercalaciones de polvo sahariano en paleodunas bioclásticas de Fuerteventura (Islas Canarias). Cuaternario y Geomorfología 26, 7388.Google Scholar
Criado, C., Yanes, A., Hernández, L., Alonso, I., 2011. Origen y formación de los depósitos eólicos en Canarias. In: Sanjaume, E., Gracia, F.J. (Eds.), Las dunas en España. Sociedad Española de Geomorfología, Zaragoza, Spain, pp. 447465.Google Scholar
Damnati, B., Petit-Maire, N., Fontugne, M., Meco, J., Williamson, D., 1996. Quaternary paleoclimates in the Eastern Canary Islands. Quaternary International 31, 3746.Google Scholar
Dan, J., 1990. The effect of dust deposition on the soils of the Land of Israel. Quaternary International 5, 107113.Google Scholar
Dan, J., Yaalon, D.H., 1966. Trends of soil development with time in the mediterranean environment of Israel. In: Transactions of the International Conference on Mediterranean Soils, Madrid, Spain, pp. 139145.Google Scholar
Dan, J., Yaalon, D.H., 1968. Formation and distribution of the soils and landscape in the Sharon. K’tavim 18, 6994.Google Scholar
Edwards, N., Meco, J., 2000. Morphology and palaeoenvironment of brood cells of Quaternary ground-nesting solitary bees (Hymenoptera, Apidae) from Fuerteventura, Canary Islands, Spain. Proceedings of the Geologists’ Association 111, 173183.Google Scholar
Faust, D., Yurena, Y., Willkommen, T., Roettig, C., Richter, Dan., Richter, Dav., Suchodoletz, H.V., Zöller, L., 2015. A contribution to the understanding of late Pleistocene dune sand-paleosol-sequences in Fuerteventura (Canary Islands). Geomorphology 246, 290304.Google Scholar
Fryberger, S.G., Krystinik, L.F., Schenk, C.J., 1990. Tidally flooded back barrier dunefield, Guerrero Negro area, Baja California, Mexico. Sedimentology 37, 2343.10.1111/j.1365-3091.1990.tb01981.xGoogle Scholar
Fúster, J.M., Cendrero, A., Gastesi, P., Ibarrola, E., López Ruiz, J., 1968. Geology and Volcanology of Canary Islands, Fuerteventura. Instituto Lucas Mallada, Consejo Superior de Investigaciones Científicas, Madrid.Google Scholar
Huerta, P., Rodríguez-Berriguete, A., Martín-García, R., Martín-Pérez, A., La Iglesia Fernández, A., Alonso-Zarza, A.M., 2015. The role of climate and aeolian dust input in calcrete formation in volcanic islands (Lanzarote and Fuerteventura, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 417, 6679.Google Scholar
Ibarrola, E., 1969. Variation trends in basaltic rocks of the Canary Islands. Bulletin of Volcanology 33, 729777.Google Scholar
Inman, D.L., Ewing, G.C., Corliss, J.B., 1966. Coastal sand dunes of Guerro Negro, Baja California, Mexico. Bulletin of the Geological Society of America 77, 787802.Google Scholar
Jahn, R., 1988. Böden Lanzarotes. PhD dissertation, University Stuttgart, Stuttgart-Hohenheim, Germany.Google Scholar
Jahn, R., 2010. Impact of aeolian sediments on pedogenesis – examples from the fringe area of the Saharan desert. 19th World Congress of Soil Science. In: Proceedings of the International Union of Soil Science, Wageningen. Brisbane, Australia.Google Scholar
James, N.P., Bone, Y., 2017. Quaternary aeolianites in south-east Australia – a conceptual linkage between marine source and terrestrial deposition. Sedimentology 64, 10051043.Google Scholar
Kruse, W., Meyer, B., 1970. Untersuchungen zum Prozeß der Rubefizierung (Entkalkungsrötung) mediterraner Böden am Beispiel kalkhaltiger marokkanischer Küsten - Dünen. Göttinger Bodenkundlichen Berichte 13, 77140.Google Scholar
Laîné, A., Kageyama, M., Salas-Mélia, D., Voldoire, A., Rivière, G., Ramstein, G., Planton, S., Tyteca, S., Peterschmitt, J.Y., 2009. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation. Climate Dynamics 32, 593614.Google Scholar
López-García, P., Gelado-Caballero, M.D., Santana-Castellano, D., Suárez de Tangil, M., Collado-Sánchez, C., Hernández-Brito, J.J., 2013. A three-year time-series of dust deposition flux measurements in Gran Canaria, Spain: A comparison of wet and dry surface deposition samplers. Atmospheric Environment 79, 689–694.Google Scholar
Meco, J., Guillou, H., Carracedo, J-C., Lomoschitz, A., Ramos, A.J.G., Rodríguez-Yánez, J.J., 2002. The maximum warmings of the Pleistocene world climate recorded in the Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 197210.Google Scholar
Meco, J., Muhs, D.R., Fontugne, M., Ramos, A.J.G., Lomoschitz, A., Patterson, D., 2011. Late Pliocene and Quaternary Eurasian locust infestations in the Canary Archipelago. Lethaia 44, 440454.Google Scholar
Menéndez, I., Cabrera, L., Sánchez-Pérez, I., Mangas, J., Alonso, I., 2009. Characterisation of two fluvio-lacustrine loessoid deposits on the island of Gran Canaria, Canary Islands. Quaternary International 196, 3643.Google Scholar
Menéndez, I., Díaz-Hernández, J.L., Mangas, J., Alonso, I., Sánchez-Soto, P.J., 2007. Airborne dust accumulation and soil development in the north-east sector of Gran Canaria (Canary Islands, Spain). Journal of Arid Environments 71, 5781.Google Scholar
Menéndez, I., Pérez-Chacón, E., Mangas, J., Tauler, E., Engelbrecht, J.P., Derbyshire, E, Cana, L., Alonso, I., 2013. Dust deposits on La Graciosa Island (Canary Islands, Spain): texture, mineralogy and a case study of recent dust plume transport. Catena 117, 133144.Google Scholar
Meszner, S., Kreutzer, S., Fuchs, M., Faust, D., 2013. Late Pleistocene landscape dynamics in Saxony, Germany: paleoenvironmental reconstruction using loess-paleosol sequences. Quaternary International 296, 94107.Google Scholar
Misota, C., Matsuhisa, Y., 1995. Isotopic evidence for the eolian origin of quartz and mica in soils developed on volcanic materials in the Canary Archipelago. Geoderma 66, 313320.Google Scholar
Montealegre Contreras, L., 1976. Mineralogía de sedimentos y suelos de la depresión del Guadalquivir. PhD dissertation, Universidad de Granada, Granada, Spain.Google Scholar
Muhs, D.R., Budahn, J., Skipp, G., Prospero, J.M., Patterson, D., Bettis, E.A. III, 2010. Geochemical and mineralogical evidence for Sahara and Sahel dust additions to Quaternary soils on Lanzarote, eastern Canary Islands, Spain. Terra Nova 22, 399410.Google Scholar
Müller, G., 1964. Frühdiagenetische allochthone Zementation mariner Küsten-Sande durch evaporitische Calcit-Ausscheidung im Gebiet der Kanarischen Inseln. Beitr. z. Mineralogie u. Petrographie 10, 125–131.Google Scholar
Müller, G., Tietz, G., 1975. Regressive diagenesis in Pleistocene eolianites from Fuerteventura, Canary Islands. Sedimentology 22, 485–496.Google Scholar
Muñoz, M., Sagredo, J., de Ignacio, C., Fernández-Suárez, J., Jeffries, T.E., 2005. New data (U-Pb, K-Ar) on the geochronology of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Lithos 85, 140153.Google Scholar
Ortiz, J.E., Torres, T., Yanes, Y., Castillo, C., De La Nuez, J., Ibáñez, M., Alonso, M.R., 2005. Climatic cycles inferred from the aminostratigraphy and aminochronology of Quaternary dunes and palaeosols from the eastern islands of the Canary Archipelago. Journal of Quaternary Science 21, 287306.Google Scholar
Pal, D.K., Srivastava, P., Bhattacharyya, T., 2003. Clay illuviation in calcareous soils of the semiarid part of the Indo-Gangetic Plains, India. Geoderma 115, 177192.10.1016/S0016-7061(02)00377-4Google Scholar
Pomel, R.S., Miallier, D., Fain, J., Sanzelle, S., 1985. Datation d’un sol brun rouge calcifère par une coulée volcanique d'âge Würm ancien (51 000 ans) à Fuerteventura (Iles Canaries). Méditerranée, troisième série 56, 5968.Google Scholar
Pye, K., Tsoar, H., 2009. Aeolian Sand and Sand Dunes. Springer-Verlag, Berlin.Google Scholar
Rando, J.C., Alcover, J.A., Navarro, J.F., García-Talavera, F., Hutterer, R., Michaux, J., 2008. Chronology and causes of the extinction of the Lava Mouse, Malpaisomys insularis (Rodentia: Muridae) from the Canary Islands. Quaternary Research 70, 141148.Google Scholar
Roettig, C-B., Kolb, T., Wolf, D., Baumgart, P., Richter, C., Schleicher, A., Zöller, L., Faust, D., 2017. Complexity of aeolian dynamics (Canary Islands). Palaeogeography, Palaeoclimatology, Palaeoecology 472, 146162.Google Scholar
Rognon, P., Coudé-Gaussen, G., 1996. Paleoclimates off northwest Africa (28°–35°N) about 18,000 yr B.P. based on continental eolian deposits. Quaternary Research 46, 118126.Google Scholar
Rothe, P., 1966. Zum Alter des Vulkanismus auf den östlichen Kanaren. Societas Scientiarum Fennica, Communications in Mathematical and Physics 31, 180.Google Scholar
Rothe, P., 1996. Kanarische Inseln. Sammlung Geologische, Führer 81, Gebrueder Borntraeger, Stuttgart.Google Scholar
Ruiz, R.C., Torres Cabrera, J.M., 2011. Inventario de recursos vulcanológicos de Fuerteventura. Cabildo de Fuerteventura, Fuerteventura.Google Scholar
Sayles, R.W., 1931. Bermuda during the Ice Age. Proceeding of the American Academy of Arts and Sciences 66, 381468.Google Scholar
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., Weinbruch, S., 2013. Bulk composition of northern African dust and its source sediments—a compilation. Earth-Science Reviews 116, 170194.Google Scholar
Schlichting, E., Blume, H.-P., Stahr, K., 1995. Bodenkundliches Praktikum. Blackwell, Berlin.Google Scholar
Schofield, J.C., 1975. Sea level fluctuations cause periodic post-glacial progradation, South Kaipara barrier, North Island, New Zealand. New Zealand Journal of Geology and Geophysics 18, 295316.Google Scholar
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., Fischer, P., Stauch, G., 2016. Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. Catena 137, 392–405.Google Scholar
Singhvi, A.K., Deraniyagala, S.U., Sengupta, D., 1986. Thermoluminescence dating of Quaternary red sand beds: a case study of coastal dunes in Sri Lanka. Earth and Planetary Science Letters 80, 139144.Google Scholar
Stoops, G., 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison.Google Scholar
Troll, V., Carracedo, J.C., 2016. The Geology of the Canary Islands. Dunedin Academic Press, Edinburgh.Google Scholar
Von Suchodoletz, H., Glaser, B., Thrippleton, T., Broder, T., Zang, U., Eigenmann, R., Kopp, B., Reichert, M., Zöller, L., 2013. The influence of Saharan dust deposits on La Palma soil properties (Canary Islands, Spain). Catena 103, 4452.Google Scholar
Von Suchodoletz, H., Kühn, P., Hambach, U., Dietze, M., Zöller, L., Faust, D., 2009. Loess-like and palaeosol sediments from Lanzarote (Canary Islands/Spain) — indicators of palaeoenvironmental change during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 278, 7187.Google Scholar
Von Suchodoletz, H., Oberhänsli, H., Hambach, U., Zöller, L., Fuchs, M., Faust, D., 2010. Soil moisture fluctuations recorded in Saharan dust deposits on Lanzarote (Canary Islands) over the last 180 ka. Quaternary Science Reviews 29, 21732184.Google Scholar
Ward, W.T., Little, I.P., Thompson, C.H., 1979. Stratigrapy of two sandrocks at Rainbow Beach, Queensland, Australia, and a note on humate composition. Palaeogeography, Palaeoclimatology, Palaeoecology 26, 305316.Google Scholar
Warren, J.K., 1983. On pedogenic calcrete as it occurs in the vadose zone of Quaternary calcareous dunes in coastal South Australia. Journal of Sedimentary Petrology 53, 787796.Google Scholar
White, B., Curran, H.A., 1988. Mesoscale physical sedimentary structures and trace fossils in Holocene carbonate eolianites from San Salvador Island, Bahamas. Sedimentary Geology 55, 163184.Google Scholar
Williamson, C., Yaalon, D.H., 1977. An experimental investigation of reddening in dune sand. Geoderma 17, 181191.Google Scholar
Yaalon, D.H., 1997. Soils in the Mediterranean region: what makes them different? Catena 28, 157169.Google Scholar
Yanes, Y., García-Alix, A., Asta, M.P., Ibáñez, M., Alonso, M.R., Delgado, A., 2013. Late Pleistocene–Holocene environmental conditions in Lanzarote (Canary Islands) inferred from calcitic and aragonitic land snail shells and bird bones. Palaeogeography, Palaeoclimatology, Palaeoecology 378, 91102.Google Scholar
Yanes, Y., Yapp, C.J., Ibáñez, M., Alonso, M.R., de-la-Nuez, J., Quesada, M.L., Castillo, C., Delgado, A., 2011. Pleistocene–Holocene environmental change in the Canary Archipelago as inferred from the stable isotope composition of land snail shells. Quaternary Research 75, 658669.Google Scholar
Zarei, M., 1989. Verwitterung und Mineralneubildung in Böden aus Vulkaniten auf Lanzarote (Kanarische Inseln). Edition B. Schulz, Berlin.Google Scholar
Zu Leiningen, W.G., 1915. Über die Einflüsse von äolischer Zufuhr auf die Bodenbildung. (Mit besonderer Berücksichtigung der Roterde). Österreichische Geologische Gesellschaft, Vienna, Austria.Google Scholar
Supplementary material: File

Roettig et al. supplementary material

Roettig et al. supplementary material 1

Download Roettig et al. supplementary material(File)
File 560.3 KB