Hostname: page-component-599cfd5f84-2stsh Total loading time: 0 Render date: 2025-01-07T07:54:41.817Z Has data issue: false hasContentIssue false

Channel planform changes along the Scrivia River floodplain reach in northwest Italy from 1878 to 2016

Published online by Cambridge University Press:  30 August 2018

Andrea Mandarino*
Affiliation:
Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy
Michael Maerker
Affiliation:
Department of Earth and Environment Sciences, University of Pavia, 27100 Pavia, Italy
Marco Firpo
Affiliation:
Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy
*
*Corresponding author at: Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy. E-mail address: [email protected] (A. Mandarino).

Abstract

A detailed, quantitative, multitemporal analysis of historical maps, aerial photos, and satellite images was performed to investigate the channel planform changes that occurred along the Scrivia River floodplain from 1878 to 2016. Various channel planform features, including channel length, area, width, braiding, sinuosity, lateral migration, activity, and stability, were computed through an innovative geographic information system–based procedure, starting from manually digitized active-channel polygons. Three active-channel morphological evolution stages are evident from: (1) 1878 to the 1950s; (2) the 1950s to the end of 1990s; and (3) the end of 1990s onward. In the first period, the river was generally able to migrate in its floodplain, shaping the riverscape. Active-channel narrowing and increasing channel stability characterize the second period. The most recent phase shows an inversion of the morphological evolutionary trend. This last phase is characterized by a slight generalized widening related to the reactivation of stabilized surfaces and to bank-erosion processes. Particularly from the 1950s to the 1990s, in-channel sediment mining and channelization with consequent occupation of riverine areas strongly affected the Scrivia River. These factors, together with floods, are thought to be the most likely causes of such consistent and fast morphological changes.

Type
Thematic Set: Fluvial Archives Group (FLAG) Poland
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpha Cygni. 1994. Difesa idrogeologica e geomorfologica del territorio ricadente nel bacino idrografico dello Scrivia. Elaborato preliminare [technical report]. Available from the Tortona Municipality archive, Tortona, Italy.Google Scholar
Ashmore, P., 1991. Channel morphology and bed load pulses in braided, gravel-bed streams. Geografiska Annaler, Series A, Physical Geography 73, 3752.Google Scholar
Aucelli, P., Rosskopf, C., 2000. Last century valley floor modifications of the Trigno River (Southern Italy): a preliminary report. Geografia Fisica e Dinamica Quaternaria 23, 105115.Google Scholar
Autorità di Bacino del Fiume Po. 2001. Linee generali di assetto idrogeologico e quadro degli interventi—Bacino dello Scrivia. Piano stralcio per l'assetto idrogeologico (PAI). Parma.Google Scholar
Barbero, E., Festa, A., Fioraso, G., Catanzariti, R., 2017. Geology of the Curone and Staffora Valleys (NW Italy): field constraints for the Late Cretaceous–Pliocene tectono-stratigraphic evolution of Northern Apennines. Journal of Maps 13, 879891.Google Scholar
Billi, P., Rinaldi, M., Simon, A., 1997. Disturbance and adjustment of the Arno River, central Italy. I. Historical perspective, the last 2000 years. In: Wang, S.S.Y., Langendoen, E.J., Shields Jr, F.D. (Eds.), Management of Landscapes Disturbed by Channel Incision, Stabilization, Rehabilitation, Restoration. Center for the Computational Hydroscience and Engineering, University of Mississippi, Oxford, Mississippi, pp. 595600.Google Scholar
Block, D.L., 2014. Historical Channel-Planform Change of the Little Colorado River near Winslow, Arizona Scientific Investigations Report No. 2014–5112. U.S. Geological Survey, Reston, VA.Google Scholar
Bollati, I.M., Pellegrini, L., Rinaldi, M., Duci, G., Pelfini, M., 2014. Reach-scale morphological adjustments and stages of channel evolution: the case of the Trebbia River (northern Italy). Geomorphology 221, 176186.Google Scholar
Braga, G., Casnedi, R., 1976. I depositi alluvionali dello Scrivia (Provincia di Alessandria) (No. P/332, Vol. 28, Part 3). Quaderni dell’Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Roma.Google Scholar
Brice, J.C., 1964. Channel Patterns and Terraces of the Loup Rivers in Nebraska (Geological Survey Professional Paper No. 422–D). Physiographic and Hydraulic Studies of Rivers. U.S. Department of the Interior, Washington, DC.Google Scholar
Brierley, G.J., Fryirs, K.A., Boulton, A., Cullum, C., 2008. Working with change: the importance of evolutionary perspectives in framing the trajectory of river adjustment. In: Brierley, G.J., Fryirs, K.A. (Eds.), River Futures: An Integrative Scientific Approach to River Repair. Island Press, Washington, DC, pp. 6584.Google Scholar
Brunetti, A., 1987a. Ormai imminente il 'Parco dello Scrivia.' Il Gazzettino 5, Castelnuovo Scrivia.Google Scholar
Brunetti, A., 1987b. Speciale Parco dello Scrivia. Il Gazzettino 6, Castelnuovo Scrivia.Google Scholar
Canuti, P., Cencetti, C., Conversini, P., Rinaldi, M., Tacconi, P., 1991. Dinamica fluviale recente di alcuni tratti dei fiumi Arno e Tevere. In: Tazioli, G.S. (Eds.), “Fenomeni di erosione e alluvionamenti degli alvei fluviali.” Ancona, pp. 2135.Google Scholar
Capponi, G., Crispini, L., Federico, L., Piazza, M., Fabbri, B., 2009. Late Alpine tectonics in the Ligurian Alps: constraints from the Tertiary Piedmont Basin conglomerates. Geological Journal 44, 211224.Google Scholar
Castaldini, D., Piacente, S., 1995. Channel changes on the Po River, Mantova Province, northern Italy. In: Hickin, E.J. (Ed.), River Geomorphology. Wiley, Chichester, UK, pp. 198208.Google Scholar
Cencetti, C., De Rosa, P., Fredduzzi, A., 2017. Geoinformatics in morphological study of River Paglia, Tiber River basin, Central Italy. Environmental Earth Sciences 76, 128.Google Scholar
Cencetti, C., Fredduzzi, A., 2008. Analisi attraverso metodologia GIS delle variazioni dei caratteri morfologico-sedimentari nella bassa valle del F. Sinni (Basilicata). Italian Journal of Quaternary Sciences 21, 147160.Google Scholar
Clerici, A., Perego, S., Chelli, A., Tellini, C., 2015. Morphological changes of the floodplain reach of the Taro River (northern Italy) in the last two centuries. Journal of Hydrology 527, 11061122.Google Scholar
Colombo, A., Filippi, F., 2010. La conoscenza delle forme e dei processi fluviali per la gestione dell’assetto morfologico del fiume Po. Biologia Ambientale 24, 331348.Google Scholar
Comiti, F., 2012. How natural are Alpine mountain rivers? Evidence from the Italian Alps. Earth Surface Processes and Landforms 37, 693707.Google Scholar
Comiti, F., Da Canal, M., Surian, N., Mao, L., Picco, L., Lenzi, M.A., 2011. Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200 years. Geomorphology 125, 147159.Google Scholar
Conti, A., Di Eusebio, L., Dramis, F., Gentili, B., 1983. Evoluzione geomorfologica recente e processi in atto nell’alveo del Tenna (Marche meridionali). In: Associazione dei Geografi Italiani (Eds.), Atti del XXIII Congresso Geografico Italiano, Catania, pp. 53–66.Google Scholar
Cortemiglia, G.C., 1998. Genesi ed evoluzione geologica del territorio Tortonese-Alessandrino. Biblioteca delle Società di Storia Arte e Archeologia per le Province di Alessandria e Asti 30, 3148.Google Scholar
Cortemiglia, G.C., 2011. Cartografia del territorio tortonese dall’Ottocento preunitario (1815–1859) all’Ottocento postunitario (1871–1878). Iulia Dertona Year LXII. second series 130, 4374.Google Scholar
Cortemiglia, G.C., 2012. Lineamenti generali della storia climatica del territorio alessandrino (Piemonte, Italia). Atti della Società Toscana di Scienze Naturali, Memorie, Serie A, 5–16, 117–119. Società Toscana di Scienze Naturali, Pisa, Italy.Google Scholar
Das, S., Pal, S., 2016. Character and cardinality of channel migration of Kalindri River, west Bengal, India. International Research Journal of Earth Sciences 4, 1326.Google Scholar
Downward, S.R., Gurnell, A.M., Brookes, A., 1994. A methodology for quantifying river channel planform change using GIS. In: Olive, L.J., Loughran, R.J., Kesby, J.A. (Eds.), Variability in Stream Erosion and Sediment Transport (Proceedings of the Canberra Symposium, December 1994). International Association of Hydrological Sciences Publication No. 224. International Association of Hydrological Sciences, Wallingford, UK, pp. 449–456.Google Scholar
Duci, G., 2011. Variazioni morfologiche recenti ed attuali di alvei fluviali dell’Appennino Settentrionale. PhD thesis, Scuola di Dottorato in Scienze e Tecnologie, University of Pavia, Pavia, Italy.Google Scholar
Dufour, S., Piégay, H., 2009. From the myth of a lost paradise to targeted river restoration: forget natural references and focus on human benefits. River Research and Applications 25, 568581.Google Scholar
Dutto, F., Maraga, F., 1994. Variazioni idrografiche e condizionamento antropico. Esempi in pianura padana. Il Quaternario 7, 381390.Google Scholar
Egozi, R., Ashmore, P., 2008. Defining and measuring braiding intensity. Earth Surface Processes and Landforms 33, 21212138.Google Scholar
Ente Riserve Naturali Garzaia di Valenza e Garzaia di Bosco Marengo. 1988. I Fiumi Italiani e le Calamità Artificiali. Comitato Difesa e Rivalutazione del Po, Italia Nostra, Lega Ambiente, Pro Natura, WWF Piemonte (Eds.).Tipografia Dominioni, Como.Google Scholar
European Commission. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, Official Journal L 327, 22/12/2000, Brussels, Belgium.Google Scholar
European Commission. 2007. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, Official Journal L 288, 6/11/2007, Brussels, Belgium.Google Scholar
Fannucci, F., Nosengo, S., 1977. Rapporti tra neotettonica e fenomeni morfogenetici del versante marittimo dell’Appennino ligure e del margine continentale. Bollettino Società Geologica Italiana 96, 4151.Google Scholar
Farabollini, P., Arigoni, D., Gentili, B., Materazzi, M., Pambianchi, G., 2008. Processi di approfondimento dell’erosione in alveo ed effetti dell’inquinamento nei fiumi delle Marche centro-meridionali (Italia centrale). Italian Journal of Quaternary Sciences 21, 317330.Google Scholar
Federico, L., Crispini, L., Vigo, A., Capponi, G., 2014. Unravelling polyphase brittle tectonics through multi-software fault-slip analysis: the case of the Voltri Unit, Western Alps (Italy). Journal of Structural Geology 68, 175193.Google Scholar
Festa, A., Fioraso, G., Bissacca, E., Petrizzo, M.R., 2015. Geology of the Villalvernia–Varzi line between Scrivia and Curone valleys (NW Italy). Journal of Maps 11, 3955.Google Scholar
Giardino, J.R., Lee, A.A., 2011. Rates of Channel Migration on the Brazos River: Final Report. Texas A&M University, College Station.Google Scholar
Gordon, E., Meentemeyer, R.K., 2006. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 82, 412429.Google Scholar
GRASS Development Team. 2017. Geographic Resources Analysis Support System (GRASS) software. Version 7.2. Open Source Geospatial Foundation. (accessed September 1, 2017). http://grass.osgeo.org.Google Scholar
Gurnell, A.M., 1997. Channel change on the River Dee meanders, 1946–1992, from the analysis of air photographs. Regulated Rivers: Research & Management 13, 1326.Google Scholar
Gurnell, A.M., Downward, S.R., Jones, R., 1994. Channel planform change on the River Dee meanders, 1876–1992. Regulated Rivers: Research & Management 9, 187204.Google Scholar
Hooke, J.M., 2008. Temporal variations in fluvial processes on an active meandering river over a 20-year period. Geomorphology, Fluvial Systems: Dynamics, Morphology and the Sedimentary Record 100, 313.Google Scholar
Hughes, M.L., McDowell, P.F., Marcus, W.A., 2006. Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74, 116.Google Scholar
Hunter, J.D., 2007. Matplotlib: a 2D graphics environment. Computing in Science Engineering 9, 9095.Google Scholar
Hupp, C.R., 1999. Relations among riparian vegetation, channel incision processes and forms, and large woody debris. In: Darby, S.E., Simon, A. (Eds.), Incised River Channels. Processes, Forms, Engineering and Management. New York: Wiley. pp. 219245.Google Scholar
Hupp, C.R., Rinaldi, M., 2007. Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers of Tuscany (central Italy). Annals of the Association of American Geographers 97, 1230.Google Scholar
Kondolf, G.M., 1994. Geomorphic and environmental effects of instream gravel mining. Landscape and Urban Planning 28, 225243.Google Scholar
Kondolf, G.M., 1997. Hungry water: effects of dams and gravel mining on river channels. Environmental Management 21, 533551.Google Scholar
Kuo, C.W., Chen, C.F., Chen, S.C., Yang, T.C., Chen, C.W., 2017. Channel planform dynamics monitoring and channel stability assessment in two sediment-rich rivers in Taiwan. Water 9, 84.Google Scholar
Lajczak, A., 1995. The impact of river regulation, 1850–1990, on the channel and floodplain of the upper Vistula River, southern Poland. In: Hickin, E.J. (Ed.), River Geomorphology. Wiley, Chichester, UK, pp. 209233.Google Scholar
Leys, K.F., Werritty, A., 1999. River channel planform change: software for historical analysis. Geomorphology 29, 107120.Google Scholar
Liébault, F., Piégay, H., 2002. Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surface Processes and Landforms 27, 425444.Google Scholar
Magliulo, P., Valente, A., Cartojan, E., 2013. Recent geomorphological changes of the middle and lower Calore River (Campania, southern Italy). Environmental Earth Sciences 70, 27852805.Google Scholar
Malavoi, J.R., Bravard, J.P., 2010. Éléments d’hydromorphologie fluviale. ONEMA (Office national de l’eau et des milieux aquatiques), Vincennes, France.Google Scholar
Malavoi, J.R., Bravard, J.P., Piégay, H., Héroin, E., Ramez, P., 1998. Détermination de l’espace de liberté des cours d’eau (Guide technique No. 2). Bassin Rhone-Méditerranée-Corse, Lyon, France.Google Scholar
Mandarino, A., 2018. Channel morphological evolution of the Orba and Scrivia River floodplain reaches (NW Italy) since 1878 based on FOSS GIS analysis, topographical surveys and field observations. PhD thesis, Scuola di Dottorato in Scienze e Tecnologie per l’Ambiente e il Territorio, University of Genova, Genova.Google Scholar
Mandarino, A., Ferraris, F., Firpo, M., 2015. Understanding landscape evolution by using DEM analysis, low order channels gradient and asymmetry factor: the case study of the Upper Scrivia river basin (Northern Apennines, Italy). In: Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, T. (Eds.), Geomorphometry for Geosciences. Adam Mickiewicz University in Poznań–Institute of Geoecology and Geoinformation, International Society for Geomorphometry, Poznań, Poland.Google Scholar
Mandarino, P., 1995. Una speranza per i fiumi: la legge Cutrera. L’InformaFiume—Notiziario del Parco Fluviale del Po e dell’Orba, 11. Available from the Aree Protette del Po Vercellese-Alessandrino archive, Valenza, Italy.Google Scholar
Marchetti, M., 2002. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities. Geomorphology, Geomorphology on Large Rivers 44, 361373.Google Scholar
McEwen, L.J., Bevens, K., Carling, P., 1989. River channel changes in response to flooding in the upper River Dee catchment, Aberdeenshire, over the last 200 years. In: Floods: Hydrological, Sedimentological and Geomorphological Implications. Wiley, Chichester, UK, pp. 219238.Google Scholar
Molli, G., Crispini, L., Malusà, M., Mosca, P., Piana, F., Federico, L., 2010. Geology of the northern Apennine–western Alps junction area: a regional review. In: Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S., Doglioni, C. (Eds.), The Geology of Italy: Tectonics and Life along Plate Margins, Journal of the Virtual Explorer. https://doi.org/10.3809/jvirtex.2010.00215.Google Scholar
Montgomery, D.R., 2008. Dreams of natural streams. Science 319, 291292.Google Scholar
Nelson, N.C., Erwin, S.O., Schmidt, J.C., 2013. Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming. Geomorphology 200, 132142.Google Scholar
Neteler, M., Mitasova, H., 2002. Open Source GIS: A GRASS GIS Approach. Kluwer International Series in Engineering and Computer Science (SECS), Kluwer Academic, Boston.Google Scholar
Pellegrini, L., Boni, P., Carton, A., 2003. Hydrographic evolution in relation to neotectonics aided by data processing and assessment: some examples from the Northern Apennines (Italy). Quaternary International 101, 211217.Google Scholar
Pellegrini, L., Maraga, F., Turitto, O., Audisio, C., Duci, G., 2008. Evoluzione morfologica di alvei fluviali mobili nel settore occidentale del bacino padano. Italian Journal of Quaternary Sciences 21, 251266.Google Scholar
Petts, G.E., Möller, H., Roux, A.L. (Eds.), 1989. Historical Change of Large Alluvial Rivers: Western Europe. Wiley, Chichester, UK.Google Scholar
Piana, F., Fioraso, G., Irace, A., Mosca, P., d’Atri, A., Barale, L., Falletti, P., et al., 2017. Geology of Piemonte region (NW Italy, Alps–Apennines interference zone). Journal of Maps 13, 395405.Google Scholar
Piégay, H., Darby, S.E., Mosselman, E., Surian, N., 2005. A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Research and Applications 21, 773789.Google Scholar
Piégay, H., Rinaldi, M., 2006. Gestione sostenibile dei sedimenti in fiumi ghiaiosi incisi in Francia. In: Autorità di Bacino del Magra (Eds.), Nuovi approcci per la comprensione dei processi fluviali e la gestione dei sedimenti. Applicazioni nel Bacino del Magra. Atti delle giornate di studio. Sarzana, pp. 59–80.Google Scholar
QGIS Development Team. 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (accessed September 1, 2017). http://qgis.osgeo.org.Google Scholar
Rapp, C.F., Abbe, T.B., 2003. A Framework for Delineating Channel Migration Zones (Ecology Publication No. 03-6–27). Washington State Department of Ecology and Department of Transportation, Lacey, WA.Google Scholar
Regalzi, E., 1989. Scrivia, il primo parco. La Stampa - Alessandria. 14 July 1989.Google Scholar
Rinaldi, M., 2003. Recent channel adjustments in alluvial rivers of Tuscany, central Italy. Earth Surface Processes and Landforms 28, 587608.Google Scholar
Rinaldi, M., 2006. La prospettiva geomorfologica e le applicazioni nella gestione degli alvei fluviali. In: Autorità di Bacino del Magra (Eds.), Nuovi approcci per la comprensione dei processi fluviali e la gestione dei sedimenti. Applicazioni nel Bacino del Magra. Atti delle giornate di studio. Sarzana, pp. 39–58.Google Scholar
Rinaldi, M., Belletti, B., Comiti, F., Nardi, L., Bussettini, M., Mao, L., Gurnell, A.M., 2015a. The Geomorphic Units survey and classification System (GUS). Deliverable 6.2, Part 4, of REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project (large-scale integrating project) funded by the European Commission within the 7th Framework Programme under Grant Agreement 282656.Google Scholar
Rinaldi, M., Belletti, B., Comiti, F., Nardi, L., Mao, L., Bussettini, M., 2015b. Sistema di rilevamento e classificazione delle Unità Morfologiche dei corsi d’acqua (SUM). Manuali e Linee Guida. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Rome.Google Scholar
Rinaldi, M., Simoncini, C., Sogni, D., 2005. Variazioni morfologiche recenti di due alvei ghiaiosi appenninici: il F. Trebbia ed il F. Vara. Supplement, Geografia Fisica e Dinamica Quaternaria 7, 313–319.Google Scholar
Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2011. Manuale tecnico—operativo per la valutazione ed il monitoraggio dello stato morfologico dei corsi d’acqua. Versione 1. Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma.Google Scholar
Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2014. IDRAIM—Sistema di valutazione idromorfologica, analisi e monitoraggio dei corsi d’acqua. Manuali e Linee Guida. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Rome.Google Scholar
Rinaldi, M., Teruggi, L., Simoncini, C., Nardi, L., 2008. Dinamica recente ed attuale di alvei fluviali: alcuni casi di studio dell’Appennino Settentrionale. Il Quaternario 21, 291302.Google Scholar
Sacchini, A., Faccini, F., Ferraris, F., Firpo, M., Angelini, S., 2016a. Large-scale landslide and deep-seated gravitational slope deformation of the Upper Scrivia Valley (Northern Apennine, Italy). Journal of Maps 12, 344358.Google Scholar
Sacchini, A., Faccini, F., Luino, F., 2016b. Deep seated gravitational slope deformations in a Ligurian Apennines Catchment (Italy): evidences, characterizations and consequences. Disaster Advances 9, 114.Google Scholar
Sacchini, A., Ferraris, F., Faccini, F., Firpo, M., 2012. Environmental climatic maps of Liguria (Italy). Journal of Maps 8, 199207.Google Scholar
Sacco, F., 1928. Variazioni fluviali in Piemonte. Atti e lavori del primo congresso del Po, tenuto a Piacenza nel giugno 1927. Published on the Rivista di attività municipale della città di Piacenza e dei comuni della provincia. Piacenza, pp. 197–200.Google Scholar
Sansoni, G., 1995. Idee per la difesa dai fiumi e dei fiumi. Il punto di vista ambientalista. Centro Documentazione di Pistoia, Pistoia, Italy.Google Scholar
Schumm, S.A., 1963. Sinuosity of Alluvial Rivers on the Great Plains. GSA Bulletin 74, 10891100.Google Scholar
Sear, D.A., Newson, M.D., Thorne, C.R., 2003. Guidebook of Applied Fluvial Geomorphology (R&D Technical Report No. FD1914). Defra/Environment Agency Flood and Coastal Defence R&D Programme, London, UK.Google Scholar
Shields, F. Jr, Simon, A., J. Steffen, L., 2000. Reservoir effects on downstream river channel migration. Environmental Conservation 27, 5466.Google Scholar
Simon, A., Darby, S.E., 1999. The nature and significance of incised river channels. In: Darby, S.E., Simon, A. (Eds.), Incised River Channels. Processes, Forms, Engineering and Management. New York: Wiley. pp. 318.Google Scholar
Surian, N., 1999. Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes and Landforms 24, 11351151.Google Scholar
Surian, N., Rinaldi, M., 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50, 307326.Google Scholar
Surian, N., Rinaldi, M., Pellegrini, L., 2009a. Linee guida per l´analisi geomorfologica degli alvei fluviali e delle loro tendenze evolutive. CLEUP, Padua, Italy.Google Scholar
Surian, N., Rinaldi, M., Pellegrini, L., Audisio, C., Maraga, F., Teruggi, L., Turitto, O., Ziliani, L., 2009b. Channel adjustments in northern and central Italy over the last 200 years. In: James, L.A., Rathburn, S.L., Whittecar, G.R. (Eds.), Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts. Geological Society of America Special Paper 451, Geological Society of America, Boulder, CO, pp. 8395.Google Scholar
Tropeano, D., Govi, M., Mortara, G., Turitto, O., Sorzana, P., Negrini, G., Arattano, M., 1999. Eventi alluvionali e frane nell’Italia settentrionale: periodo 1975–1981 (No. 1927). Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Torino, Italy.Google Scholar
Turitto, O., Cirio, C.G., Nigrelli, G., 2010. Mobilità planimetrica di un alveo fluviale e condizionamento imposto dall’uomo. Il caso del Fiume Tanaro in territorio alessandrino. L’Acqua 3, 928.Google Scholar
Urban, M.A., Rhoads, B.L., 2003. Catastrophic Human-Induced Change in Stream-Channel Planform and Geometry in an Agricultural Watershed, Illinois, USA. Annals of the Association of American Geographers 93, 783796.Google Scholar
Wallick, J.R., Lancaster, S.T., Bolte, J.P., 2006. Determination of bank erodibility for natural and anthropogenic bank materials using a model of lateral migration and observed erosion along the Willamette River, Oregon, USA. River Research and Applications 22, 631649.Google Scholar
Werritty, A., Ferguson, R.I., 1980. Pattern changes in a Scottish braided river over 1, 30 and 200 years. In: Cullingford, R.A., Davidson, D.A., Lewin, J. (Eds.), Timescales in Geomorphology. Wiley, Chichester, UK, pp. 5368.Google Scholar
Winterbottom, S.J., 2000. Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geomorphology 34, 195208.Google Scholar
Ziliani, L., Surian, N., 2016. Reconstructing temporal changes and prediction of channel evolution in a large Alpine river: the Tagliamento River, Italy. Aquatic Sciences 78, 8394.Google Scholar
Ziliani, L., Surian, N., 2012. Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology 173, 104117.Google Scholar