Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:47:09.209Z Has data issue: false hasContentIssue false

Changing fire regimes in the temperate rainforest region of southern Chile over the last 16,000 yr

Published online by Cambridge University Press:  20 January 2017

Abstract

A high-resolution macroscopic charcoal record from Lago Melli (42°46′S, 73°33′W) documents the occurrence of forest fires in the lowlands of Isla Grande de Chiloé, southern Chile, over the last 16,000 yr. Our data suggest that fire activity in this region was largely modulated by the position/intensity of the southern westerlies at multi-millennial time scales. Fire activity was infrequent or absent between 16,000–11,000 and 8500–7000 cal yr BP and was maximal between ∼ 11,000–8500 and 3000–0 cal yr BP. A mosaic of Valdivian/North Patagonian rainforest species started at ∼ 6000 cal yr BP, along with a moderate increase in fire activity which intensified subsequently at 3000 cal yr BP. The modern transition between these forest communities and the occurrence of fires are largely controlled by summer moisture stress and variability, suggesting the onset of high-frequency variability in summer precipitation regimes starting at ∼ 5500 cal yr BP. Because negative anomalies in summer precipitation in this region are teleconnected with modern El Niño events, we propose that the onset of El Niño-like variability at ∼ 5700–6200 cal yr BP led to a reshuffling of rainforest communities in the lowlands of Isla Grande de Chiloé and an increase in fire activity.

Type
Research Article
Copyright
Elsevier B.V.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzúa, A.M., Villagrán, C., Moreno, P.I., (2004). Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43°S). Quaternary Research 62, 4959.Google Scholar
Armesto, J.J., Fuentes, E., (1988). Tree species regeneration in a mid-elevation, temperate rain forest in Isla de Chiloé, Chile. Vegetatio 74, 151159.CrossRefGoogle Scholar
Bennett, K.D., Haberle, S.G., Lumley, S.H., (2000). The last Glacial–Holocene Transition in Southern Chile. Science 290, 325328.Google Scholar
Bengtsson, L., Enell, M., (1986). Chemical analysis. Berglund, B.E., Handbook of Palaeoecology and Palaeohydrology. John Wiley & Sons, 423451.Google Scholar
Clark, J.S., (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research 30, 6780.Google Scholar
Donoso, C., Escobar, B., Urrutia, J., (1985). Estructura y estrategias regenerativas de un bosque virgen de Ulmo (Eucryphia cordifolia Cav.)—Tepa (Laurelia philippiana Phil.) Looser en Chiloé, Chile. Revista Chilena de Historia Natural 58, 171186.Google Scholar
Di Castri, F., Hajek, E.R., (1976). Bioclimatología de Chile, Vicerrectoría Académica, Universidad Católica de Chile, Santiago.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. John Wiley & Sons.Google Scholar
Gaete, N., Navarro, X., Constantinescu, F., Mera, R., Selles, D., Solari, M.E., Vargas, M.L., Oliva, D., Durán, L., (2000). Una Mirada al Modo de Vida Canoero del Mar Interior desde Piedra Azul, Precirculado Simposio Ocupaciones Iniciales de Cazadores Recolectores en el Sur de Chile (Fuego Patagonia y Araucanía). XV Congreso de Arqueología Chilena, Arica 2000 .Google Scholar
Gutiérrez, A.G., Armesto, J.J., Aravena, J.C., (2004). Disturbance and regeneration dynamics of an old-growth North Patagonian rain forest in Chiloé Island, Chile. Journal of Ecology 92, 598608.CrossRefGoogle Scholar
Haberle, S.G., Bennett, K.D., (2004). Postglacial formation and dynamics of North Patagonian Rainforest in the Chonos Archipelago, Southern Chile. Quaternary Science Reviews 23, 24332452.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.Google Scholar
Heusser, C., (1987). Fire history of Fuego-Patagonia. Quaternary of South America and Antarctic Peninsula 5, 93109.Google Scholar
Heusser, C.J., (1990). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 107127.Google Scholar
Heusser, C., (1994). Paleoindians and fire during the late Quaternary in southern South America. Revista Chilena de Historia Natural 67, 435442.Google Scholar
Huber, U.M., Markgraf, V., Schabitzc, F., (2004). Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America. Quaternary Science Reviews 23, 10791097.CrossRefGoogle Scholar
Kitzberger, T., (2002). ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina. International Journal of Wildland Fire 11, 3339.Google Scholar
Lara, A., (1991). The dynamics and disturbance regimes of Fitzroya cupressoides in the south-central Andes of Chile. Unpublished PhD thesis, University of Colorado.Google Scholar
Long, C.J., Whitlock, C., (2002). Fire and vegetation history from the coastal rain forest of the Western Oregon Coast Range. Quaternary Research 58, 215225.Google Scholar
Lusk, C.H., (1999). Long-lived light-demanding emergents in southern temperate forests: The case of Weinmannia trichosperma (Cunoniaceae) in southern Chile. Plant Ecology 140, 111115.Google Scholar
Lusk, C.H., Odgen, J., (1992). Age structure and dynamics of a podocarp-broadleaf forest in Tongariro National Park, New Zealand. Journal of Ecology 80, 379393.Google Scholar
Markgraf, V., Anderson, L., (1994). Fire history of Patagonia: Climate versus human cause. Revista do Instituto Geografico do Sao Paulo 15, 3347.Google Scholar
Montecinos, A., Aceituno, P., (2003). Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. Journal of Climate 16, 281296.Google Scholar
Moreno, P.I., (2000). Climate, fire, and vegetation between about 13,000 and 9200 14C yr B.P.. Quaternary Research 54, 8189.CrossRefGoogle Scholar
Moreno, P.I., (2004). Millennial-scale climate variability in northwest Patagonia over the last 15,000 yrs. Journal of Quaternary Science 19, 3547.Google Scholar
Moreno, P.I., León, A.L., (2003). Abrupt vegetation changes during the last Glacial–Holocene transition in mid-latitude South America. Journal of Quaternary Science 18, 787800.Google Scholar
Moreno, P.I., Jacobson, G.L., Lowell, T.V., Denton, G.H., (2001). Interhemispheric climate links revealed from a late-glacial cool episode in southern Chile. Nature 409, 804808.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
Naranjo, J.A., Stern, C.R., (2004). Holocene tephrochronology of the southernmost part (42°30′–45°S) of the Andean Southern Volcanic Zone. Revista Geológica de Chile 31, 225240.Google Scholar
Oberdorfer, E., (1960). Pflanzensoziologische Studien in Chile. Cramer, Weinheim., 1208.Google Scholar
Ocampo, C., Rivas, P., (2003). Nuevos datos sobre el poblamiento temprano de los extremos geográficos de los Canales patagónicos: Isla de Chiloé e Isla Navarino. Chungara 2003. Acta del XV Congreso Chileno de Arqueología del año 2000, Arica 129.Google Scholar
Páez, M.M., Villagrán, C., Carrillo, R., (1994). Modelo de la dispersión polínica actual en la región templada chileno-argentina de Sudamérica y su relación con el clima y la vegetación. Revista Chilena de Historia Natural 67, 417433.Google Scholar
Patterson, W.A., Edwards, K.J., Maguire, D.J., (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6, 323.CrossRefGoogle Scholar
Pino, M., Dillehay, T.D., (1988). Monte Verde, South Central Chile: Stratigraphy, Climate Change, and Human Settlement. Geoarchaeology 3, 3, 177191.Google Scholar
Ramírez, C., Figueroa, , (1985). Delimitación ecosociológica del bosque valdiviano (Chile) mediante análisis estadísticos multivariados. Studia Oecológica 6, 6982.Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson III, J.B., Rollins, H.B., Clement, A., (2001). Variation in Holocene El Niño frequencies: Climate records and cultural consequences in ancient Peru. Geological Society of America 29, 603606.Google Scholar
Schmithüsen, J., (1956). Die raumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen 17, 186.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R., (2005). CALIB Radiocarbon Calibration. Execute Version 5.0.2 html.Google Scholar
Tinner, W., Hu, F.S., (2003). Size parameters, size-class distribution and area–number relationship of microscopic charcoal: Relevance for fire reconstruction. The Holocene 13, 499505.Google Scholar
Tinner, W., Conedera, M., Ammann, B., Gäggeler, H.W., Gedye, S., Jones, R., Sägesser, B., (1998). Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. The Holocene 8, 3142.Google Scholar
Urrutia, R.B., (2002). Desallorro de una cronología de anchos de anillos para alerce (Fitzroya cupressoides) y reconstrucción de la historia de incendios en el área de Abtao P.N. Chiloé, X Región. Unpublished Thesis. Ingeniería Forestal, Universidad Católica de Chile.Google Scholar
Veblen, T.T., (1985). Forest development in tree-fall gaps in the temperate rain forest of Chile. National Geographic Research 1, 162183.Google Scholar
Veblen, T.T., Ashton, D.H., (1978). Catastrophic influences on the vegetation of the Valdivian Andes. Vegetatio 36, 149167.Google Scholar
Veblen, T.T., Donoso, C., Schlegel, F.M., Escobar, B., (1981). Forest dynamics in south-central Chile. Journal of Biogeography 8, 211247.Google Scholar
Villagrán, C., (1985). Análisis palinológico de los cambios vegetacionales durante el Tardiglacial y Postglacial en Chiloé, Chile. Revista Chilena de Historia Natural 58, 5769.Google Scholar
Villagrán, C., (1988). Late Quaternary Vegetation of Southern Isla Grande de Chiloé, Chile. Quaternary Research 29, 294306.Google Scholar
Villagrán, C., (1990). Glacial, late glacial and post-glacial climate and vegetation of the Isla Grande de Chiloé, Southern Chile (41–44°S). Quaternary of South America and Antarctic Peninsula 8, 115.Google Scholar
Whitlock, C., Anderson, R.S., (2003). Fire history reconstructions based on sediments records from lakes and wetlands. In Fire and Climatic change in Temparate Ecosystem of the Western Americas. Veblen et al. 2003. Springer, Ecological Studies 160.CrossRefGoogle Scholar
Whitlock, C., Bianchi, M.M., Bartlein, P.J., Markgraf, V., Marlon, J., Walsh, M., McCoy, N., (2006). Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41–42.5°S), Argentina. Quaternary Research 66, 187201.CrossRefGoogle Scholar
Whitlock, C., Moreno, P.I., Bartlein, P.J., (2007). Climatic controls of Holocene fire patterns in southern South America. Quaternary Research 68, 2836.Google Scholar