Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T13:57:48.614Z Has data issue: false hasContentIssue false

Central Andean (28–34°S) flood record 0–25 ka from Salinas del Bebedero, Argentina

Published online by Cambridge University Press:  20 April 2022

Jay Quade*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
Elad Dente
Affiliation:
Shamir Research Institute and the Department of Marine Geosciences, L.H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel Geological Survey of Israel, 32 Yesha'ayahu Leibowitz St., Jerusalem, 96921, Israel
Alyson Cartwright
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA Eclipse Mining Technologies, 3602 E Fort Lowell Rd., Tucson, AZ, 85716
Adam Hudson
Affiliation:
US Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO, 80225, USA
Sebastian Jimenez-Rodriguez
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
David McGee
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
*
*Corresponding author email address: <[email protected]>

Abstract

The Salinas del Bebedero occupies an isolated basin in the foreland of central Argentina at 33°S and was flooded repeatedly over past 25 ka. Isotopic evidence demonstrates that this flooding was due to overflow of the nearby Río Desaguadero with waters derived from the distant (≥300 km) central Andes between 28–34°S. Stratigraphic and shoreline evidence shows that floods occurred most frequently from 14.3 to 11.4 ka, followed by lesser events between 14.3 to 11.4 ka, and during the late Holocene from 2.6 to ca. 0.2 ka. Hydraulic modeling (2D HEC-RAS) shows that these floods could have originated from repeated subglacial drainage or sudden outbursts with a volume of >100 × 106 m3 and a peak discharge of >1,000 m3 s-1 each. The absence of flood deposits from 11 to 3 ka points to exceptionally dry and virtually ice-free conditions in the Andes between 28–34°S. The floods were probably caused by major rainfall or dammed-lake outbursts clustered largely during wet pluvial periods in the otherwise moisture-limited central Andes and Atacama Desert, such as when the Intertropical Convergence Zone was shifted southward. These include Central Andean pluvial events (CAPE) I (17–14.5 ka) and II (12.5–9 ka), and the Neoglacial/Formative archeological period 2500 ka to near-present.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article has been updated since its initial publication. For details, see DOI: https://doi.org/10.1017/qua.2022.40

References

REFERENCES

Abbott, M.B., Binford, M.W., Brenner, M., Kelts, K.R., 1997. A 3500 14C yr high-resolution record of water-level change in Lake Titicaca, Bolivia/Peru. Quaternary Research 47, 169180.CrossRefGoogle Scholar
Anacona, P.I., Mackintosh, A., Norton, K.P., 2015. Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms 40, 221.CrossRefGoogle Scholar
Baker, P.A., Fritz, S.C., 2015. Nature and causes of Quaternary climatic variation of tropical South America. Quaternary Science Reviews 124, 3147.CrossRefGoogle Scholar
Bernal, J.P., Cruz, F.W., Stríkis, N.M., Wang, X., Deininger, M., Catunda, M.C.A., Ortega-Obregón, C., Cheng, H., Edwards, R.L., Auler, A., 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth and Planetary Science Letters 450, 186196.CrossRefGoogle Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., Rylander, K.A., 2000. A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, 15421546.CrossRefGoogle ScholarPubMed
Binford, M.W., Kolata, A.L., Brenner, M., Janusek, J.W., Seddon, M.T., Abbott, M., Curtis, J.H., 1997. Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47, 235248.CrossRefGoogle Scholar
Bird, B.W., Abbott, M.B., Vuille, M., Rodbell, D.T., Stansell, N.D., Rosenmeier, M.F., 2011. A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proceedings of the National Academy of Sciences 108, 85838588.CrossRefGoogle ScholarPubMed
Blisniuk, P.M., Stern, L.A., 2005. Stable isotope paleoaltimetry: a critical review. American Journal of Science 305, 10331074.CrossRefGoogle Scholar
Blum, M., Martin, J., Milliken, K., Garvin, M., 2013. Paleovalley systems: Insights from Quaternary analogs and experiments. Earth-Science Reviews 116, 128169.CrossRefGoogle Scholar
Brunner, G., 2016. HEC-RAS River Analysis System Hydraulic Reference Manual, Version 5.0. US Army Corps of Engineers Hydrologic Engineering Center, Davis, CA, USA.Google Scholar
Brutsaert, W., 1982. Evaporation Into the Atmosphere: Theory, History, and Applications. D. Reidel Publishers, Dordrecht, 299 pp.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., 2006. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters 248, 495507.CrossRefGoogle Scholar
Cvijanovic, I., Chiang, J.C.H., 2013. Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate Dynamics 40, 14351452.CrossRefGoogle Scholar
De Francesco, C.G., Hassan, G.S., 2009. The significance of molluscs as paleoecological indicators of freshwater systems in central-western Argentina Palaeogeography, Palaeoclimatology, Palaeoecology 274, 105113.CrossRefGoogle Scholar
Déletang, L.F., 1929. Contribución al Estudio de las Salinas Argentinas, La Salina del Bebede ro y sus Relaciones con el Sistema Hidrgráfico Andino o del Desaguadero. Publicación 47, Ministerio de Agricultura, Dirección General de Minas, Geología e Hidrología, Buenos Aires,. 86 pp.Google Scholar
Dettinger, M., Quade, J., 2015. Calibrating and testing the volcanic glass paleoaltimeter in South America. In: DeCelles, P.G., Ducea, M., Kapp, P., Carrapa, B. (Eds.), The Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and northern Chile. Geological Society of America Memoir 212, 261276.Google Scholar
Dettman, D.L., Reische, A.K., Lohmann, K.C., 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta 63, 10491057.CrossRefGoogle Scholar
Dussaillant, A., Benito, G., Buytaert, W., Carling, P., Meier, C., Espinoza, F., 2010. Repeated glacial-lake outburst floods in Patagonia; an increasing hazard? Natural Hazards 54, 469481.CrossRefGoogle Scholar
Ermini, L., Casagli, N., 2003. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surface Processes and Landforms 28, 3147.CrossRefGoogle Scholar
Espizúa, L.E., Bengochea, J.D., 1990. Surge of Grande del Nevado Glacier (Mendoza, Argentina) in 1984: its evolution through satellite images. Geografiska Annaler, Series A (Physical Geography) 72, 255259.CrossRefGoogle Scholar
Ferrer, C., 1999. Represamientos y rupturas de embalses naturales (lagunas de obturación) como efectos cosísmicos: algunos ejemplos en Los Andes venezolanos. Revista Geográphica Venezolana 40, 119131.Google Scholar
Figini, A., Gomez, G., Carbonari, J., Huarte, R., Zubiaga, A., 1984. Museo de la Plata Radiocarbon Measurements I. Radiocarbon 26, 127134.CrossRefGoogle Scholar
García, A., 1999. Quaternary charophytes from Salina del Bebedero, Argentina: their relation with extant taxa and paleolimnological significance. Journal of Paleolimnology 21, 307323.CrossRefGoogle Scholar
Garreaud, R.D., 2000. Intraseasonal variability of moisture and rainfall over the South American Altiplano. Monthly Weather Review 128, 33373346.2.0.CO;2>CrossRefGoogle Scholar
Garreaud, R., Vuille, M., Clement, A.C., 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 522.CrossRefGoogle Scholar
Gayo, E.M., Latorre, C., Jordan, T.E., Nester, P.L., Estay, S.A., Ojeda, K.F., Santoro, C.M., 2012b. Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21°S). Earth-Science Reviews 113, 120140.CrossRefGoogle Scholar
Gayo, E.M., Latorre, C., Santoro, C.M., 2015. Timing of occupation and regional settlement patterns revealed by time-series analyses of an archaeological radiocarbon database for the South-Central Andes (16°–25°S). Quaternary International 356, 414.CrossRefGoogle Scholar
Gayo, E.M., Latorre, C., Santoro, C.M., Maldonado, A., De Pol-Holz, R., 2012a. Hydroclimate variability in the low-elevation Atacama Desert over the last 2500 yr. Climate of the Past 8, 287306.CrossRefGoogle Scholar
Gehrels, G., Pecha, M., 2014. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere 10, 4965.CrossRefGoogle Scholar
Gehrels, G., Valencia, V., Pullen, A., 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona LaserChron Center. In: Olszweski, T. (Ed.), Geochronology: Emerging Opportunities. The Paleontological Society Papers 12, pp. 6776.Google Scholar
Geyh, M.A., Grosjean, M., Núñez, L., Schotterer, U., 1999. Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama Desert (Northern Chile). Quaternary Research 52, 143153.CrossRefGoogle Scholar
González, M.A., 1981. Evidencias paleoclimáticas en la Salina del Bebedero (San Luis). In: Yrigoyen, M. (Ed.), Geología y Recursos Naturales de la Provincia de San Luis: Relatorio del VIII Congreso Geológico Argentino, 20–26 de Setiembre, Actas 3, pp. 411438.Google Scholar
González, M.A., Maidana, N.I. 1998. Post-Wisconsinian paleoenvironments at Salinas del Bebedero Basin, San Luis, Argentina. Journal of Paleolimnology 20, 353368.CrossRefGoogle Scholar
Harbeck, G.E. Jr., 1962. A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory: studies in evaporation. United States Geological Survey Professional Paper 272-E, 105 p.Google Scholar
Hart, W.S., Quade, J., Madsen, D., Kauffman, D., Oviatt, C., 2004. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake basin. Geological Society of America Bulletin 116, 11071119.CrossRefGoogle Scholar
Haselton, K., Hilley, G., Strecker, M.R., 2002. Average Pleistocene climatic patterns in the southern central Andes: controls on mountain glaciation and paleoclimate implications. The Journal of Geology 110, 211226.CrossRefGoogle Scholar
Hassan, G.S., De Francesco, C.G., Peretti, V., 2012. Distribution of diatoms and mollusks in shallow lakes from the semiarid Pampa region, Argentina: Their relative paleoenvironmental significance. Journal of Arid Environments 78, 6572.CrossRefGoogle Scholar
Hastenrath, S.L., Kutzbach, J.E., 1983. Paleoclimate estimates from water and energy budgets of East African lakes. Quaternary Research 19, 141153.CrossRefGoogle Scholar
Hermanns, R.L., Niedermann, S., Ivy-Ochs, S., Kubik, P.W., 2004. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina)—evidence from surface exposure dating and stratigraphic analyses. Landslides 1, 113122.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Hodell, D.A., Kanfoush, S.L., Shemesh, A., Crosta, X., Charles, C.D., Guilderson, T.P., 2001. Abrupt cooling of Antarctic surface waters and sea-ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr B.P. Quaternary Research 56, 191198.CrossRefGoogle Scholar
Ishikawa, N.F., Hyodo, F., Tayasu, I., 2013. Use of carbon-13 and carbon-14 natural abundances for stream food web studies. Ecological Research 28, 759769.CrossRefGoogle Scholar
Jenny, B., Wilhelm, D., Valero-Garcés, B., 2003. The Southern Westerlies in central Chile: Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33°50'S). Climate Dynamics 20, 269280.CrossRefGoogle Scholar
King, W.D.V.O., 1934. The Mendoza River flood of 10–11 January 1934—Argentina. The Geographical Journal 84, 321326.CrossRefGoogle Scholar
Kutzbach, J., 1980. Estimates of past climate at paleolake Chad, North Africa, based on a hydrological and energy-balance model. Quaternary Research 14, 210223.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Wefer, G., 1999. High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, 8393.CrossRefGoogle Scholar
Latorre, C., Betancourt, J.L., Arroyo, M.T.K., 2006. Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22°S) of northern Chile. Quaternary Research 65, 450466.CrossRefGoogle Scholar
Leclair, S.F., 2002. Preservation of cross-strata due to the migration of subaqueous dunes: an experimental investigation. Sedimentology 49, 11571180.CrossRefGoogle Scholar
Lenters, J.D., Cook, K.H., 1997. On the origin of the Bolivian High and related circulation features of the South American climate. Journal of The Atmospheric Sciences 54, 656678.2.0.CO;2>CrossRefGoogle Scholar
Lliboutry, L., 1998. Glaciers of Chile and Argentina. In: Williams, R.S., Ferrigno, J.G. (Eds.), Satellite Image Atlas of Glaciers of the World: South America. United States Geological Survey Professional Paper 1386-I, 11091136.Google Scholar
Marengo, J.A., Douglas, M.W/, Silva Dias, P.L., 2002. The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WETAMC campaign. Journal of Geophysical Research 107 (D20) 8079, doi:10.1029/2001JD001188CrossRefGoogle Scholar
Markgraf, V., Baumgartner, T.R., Bradbury, J.P., Diaz, H.F., Dunbar, R.B., Luckman, B.H., Seltzer, G.O., Swetnam, T.W., Villalba, R., 2000. Paleoclimate reconstruction along the Pole–Equator–Pole transect of the Americas (PEP 1). Quaternary Science Reviews 19, 125140.CrossRefGoogle Scholar
Martini, M.A., Kaplan, M.R., Strelin, J.A., Astini, R.A., Schaefer, J.M., Caffee, M.W., Schwartz, R., 2017. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes. Quaternary Science Reviews 171, 245259.CrossRefGoogle Scholar
Martínez, D.E., Quiroz Londoño, O.M., Solomon, D.K., Dapeña, C., Massone, H.E., Benavente, M.A., Panarello, H.O., 2017. Hydrogeochemistry, isotopic composition and water age in the hydrologic system of a large catchment within a plain humid environment (Argentine Pampas): Quequén Grande River, Argentina. River Research and Applications 33, 438449.CrossRefGoogle Scholar
Masiokas, M.H., Villalba, R., Luckman, B.H., Mauget, S., 2010. Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. Journal of Hydrometeorology 11, 822831.CrossRefGoogle Scholar
McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837.CrossRefGoogle ScholarPubMed
Millard, A.R., 2014. Conventions for reporting radiocarbon determinations. Radiocarbon 56, 555559.CrossRefGoogle Scholar
Moreiras, S.M., 2005. Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina. Landslides 2, 5359.CrossRefGoogle Scholar
Nester, P.L., Gayó, E., Latorre, C., Jordan, T.E., Blanco, N., 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences of the United States of America 104, 1972419729.CrossRefGoogle ScholarPubMed
O'Conner, J., Costa, J.E., 2004. The world's largest floods, past and present—their causes and magnitudes. United States Geological Survey Circular 1254, 13 p.Google Scholar
Paraense, W.L., 2005. Planorbidae, Lymnaeidae and Physidae of Argentina (Mollusca: Basommatophora). Memórias do Instituto Oswaldo Cruz 100, 491493.CrossRefGoogle Scholar
Pitte, P., Berthier, E., Masiokas, M.H., Cabot, V., Ruiz, L., Ferri Hidalgo, L., Gargantini, H., Zalazar, L., 2016. Geometric evolution of the Horcones Inferior Glacier (Mount Aconcagua, Central Andes) during the 2002–2006 surge. Journal of Geophysical Research Earth Surface 121, 111127.CrossRefGoogle Scholar
Placzek, C.P., Quade, J., Patchett, P.J., 2013. A 130 ka reconstruction of rainfall on the Bolivian Altiplano. Earth and Planetary Science Letters 363, 97108.CrossRefGoogle Scholar
Placzek, C., Quade, J., Patchett, P.J., 2006. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515532.CrossRefGoogle Scholar
Prieto, A.R., Blasi, A.M., De Francesco, C.G., Fernández, C., 2004. Environmental history since 11,000 14C yr B.P. of the northeastern Pampas, Argentina, from alluvial sequences of the Luján River. Quaternary Research 62, 146166.Google Scholar
Prohaska, F., 1976. The climate of Argentina, Paraguay, and Uruguay. In: Schwerdtfeger, W. (Ed.), Climates of Central and South America. World Survey of Climatology 12, Elsevier, Amsterdam. pp. 13112.Google Scholar
Quade, J., Rech, J., Betancourt, J., Latorre, C., Quade, B., Rylander, K., Fisher, T., 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, 343360.CrossRefGoogle Scholar
Rasmussen, K.L., Chaplin, M.M., Zuluaga, M.D., Houze, R.A., 2016. Contribution of extreme convective storms to rainfall in South America. Journal of Hydrometeorology 17, 353367.CrossRefGoogle Scholar
Reesink, A.J.H., Van den Berg, J.H., Parsons, D.R., Amsler, M.L., Best, J.L., Hardy, R.J., Orfeo, O., Szupiany, R.N., 2015. Extremes in dune preservation: controls on the completeness of fluvial deposits. Earth-Science Reviews 150, 652665.CrossRefGoogle Scholar
Reuter, J., Stott, L., Khider, D., Sinha, A., Cheng, H., Edwards, R.L., 2009. A new perspective on the hydroclimate variability in northern South America during the Little Ice Age. Geophysical Research Letters 36, L21706. https://doi.org/10.1029/2009GL041051.CrossRefGoogle Scholar
Rohrmann, A., Strecker, M.R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H., Alonso, R.N., Schildgen, T.F., Montero, C., 2014. Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth and Planetary Science Letters 407, 187195.CrossRefGoogle Scholar
Rojas, M., Arias, P.A., Flores-Aqueveque, V., Seth, A., Vuille, M., 2016. The South American monsoon variability over the last millennium in climate models. Climate of the Past 12, 16811691.CrossRefGoogle Scholar
Rojo, L.D., Paez, M., Chiesa, J.O., Strasser, E.N., Schäbitz, F., 2012. Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años ap en Salinas Del Bebedero (San Luis, Argentina). Ameghiniana 49, 427441.Google Scholar
Rozanski, K., Araguás-Araguás, L., 1995. Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bulletin de l'Institut Français d'Études Andines 24, 379390.Google Scholar
Santoro, C.M., Capriles, J.M., Gayo, E.M., de Porras, M.E., Maldonado, A., Standen, V.G., Latorre, C., et al. , 2016. Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. Journal of Anthropological Archaeology 46, 2839.CrossRefGoogle Scholar
Saulo, A.C., Nicolini, M., Chou, S.C., 2000. Model characterization of the South American low-level flow during 1997–1998 spring–summer season. Climate Dynamics 16, 867881.CrossRefGoogle Scholar
Saylor, J., Sundell, K., 2016. Quantifying comparison of large detrital geochronology data sets. Geosphere 12, 203220.CrossRefGoogle Scholar
Schuster, R.L., 2000. A worldwide perspective on landslide dams. In: Alford, D., Schuster, R.L. (Eds.), Usoi Landslide Dam and Lake Sarez—An Assessment of Hazard and Risk in the Pamir Mountains, Tajikistan. United Nations Publication, New York and Geneva. pp. 1922.Google Scholar
Sims, J.P., Ireland, T.R., Camacho, A., Lyones, E., Pieters, P.E., Skirrow, R.G., Stuart-Smith, P.G., Miró, R., 1998. U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In: Pankhurst, R.J., Rapela, C.W. (Eds.), The Proto-Andean Margin of Gondwana. Geological Society of London Special Publications 142, 259281.Google Scholar
Steenken, A., Wemmer, K., Martino, R.D., López de Luchi, M., Guereschi, A., Siegesmund, S., 2010. Post-Pampean cooling and the uplift of the Sierras Pampeanas in the west of Cordoba (Central Argentina). Neues Jahrbuch für Geologie und Paläontologie 256, 235255.CrossRefGoogle Scholar
Stríkis, N.M., Cruz, F.W., Barreto, E.A.S., Naughton, F., Vuille, M., Cheng, H., Voelker, A.H.L., et al. , 2018. South American monsoon response to iceberg discharge in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America 115, 37883793.CrossRefGoogle ScholarPubMed
Stuiver, M., Reimer, P.J., Reimer, R.W., 2021. CALIB 8.2 (WWW program). http://calib.org. (accessed November 2021)Google Scholar
Tietze, E., De Francesco, C.G., 2010. Environmental significance of freshwater mollusks in the Southern Pampas, Argentina: to what detail can local environments be inferred from mollusk composition? Hydrobiologia 641, 133143.CrossRefGoogle Scholar
Trauth, M. H., Bookhagen, B., Marwan, N., Strecker, M., 2003. Multiple landslide clusters record Quaternary climate change in the northwestern Argentine Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 109121.CrossRefGoogle Scholar
Universidad de Buenos Aires Facultad de Ingeniería (UBAFI), 2009. Estudio Integral de la Cuenca del Río Desaguadero-Salado-Chadileuvú-Curacó Tomo I–III. Facultad de Ingeniería, Buenos Aires, Argentina.Google Scholar
Uribe, M., Angelo, D., Capriles, J., Castro, V., de Porras, M., García, M., Gayo, E., et al. , 2020. El Formativo en Tarapacá (3000-1000 aP): Arqueología, naturaleza y cultura en la Pampa del Tamarugal, Desierto de Atacama, norte de Chile. Latin American Antiquity 31, 81102.CrossRefGoogle Scholar
Viale, M., Valenzuela, R., Garreaud, R., Ralph, F.M., 2018. Impacts of atmospheric rivers on precipitation in Southern South America. Journal of Hydrometeorology 19, 16711687.CrossRefGoogle Scholar
Villagrán, C., Varela, 1990. Palynological evidence for increased aridity on the central Chilean Coast during the Holocene. Quaternary Research 34, 198207.CrossRefGoogle Scholar
Vuille, M., Ammann, C., 1997. Regional snowfall patterns in the high, arid Andes. Climate Change 36, 413423.CrossRefGoogle Scholar
Vuille, M., Bradley, R.S., Werner, M., Healy, R., Keimig, F., 2003. Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. Journal of Geophysical Research Atmospheres 108, 4174. https://doi.org/10.1029/2001JD002038Google Scholar
Vuille, M., Burns, S.J., Taylor, B.L., Cruz, F.W., Bird, B.W., Abbott, M.B., Kanner, L.C., Cheng, H., Novello, V.F., 2012. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate of the Past 8, 13091321.CrossRefGoogle Scholar
Vuille, M., Keimig, F., 2004. Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. Journal of Climate 17 33343348.2.0.CO;2>CrossRefGoogle Scholar
Walder, J.S., Costa, J.E., 1996. Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms 21, 701723.3.0.CO;2-2>CrossRefGoogle Scholar
Weide, D., Fritz, S., Hastorf, C., Bruno, M., Baker, P., Guedron, S., Salenbien, W., 2017. A ~6000 yr diatom record of mid- to late Holocene fluctuations in the level of Lago Wiñaymarca, Lake Titicaca (Peru/Bolivia). Quaternary Research 88, 179192.CrossRefGoogle Scholar
Wilson, R., Glasser, N.F., Reynolds, J.M., Harrison, S., Anacona, P.I., Schaefer, M., Shannon, S., 2018. Glacial lakes of the central and Patagonian Andes. Global and Planetary Change 162, 275291.CrossRefGoogle Scholar
Workman, T.R., Rech, J.A., Gayó, E.M., Santoro, C.M., Ugalde, P.C., De Pol-Holz, R., Capriles, J.M., Latorre, C., 2020. Landscape evolution and the environmental context of human occupation of the southern Pampa del Tamarugal, Atacama Desert, Chile. Quaternary Science Reviews 243, 106502. https://doi.org/10.1016/j.quascirev.2020.106502.CrossRefGoogle Scholar
Yoshimori, M., Broccoli, A.J., 2008. Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. Journal of Climate 21, 43994423.CrossRefGoogle Scholar
Zech, J., Terrizzano, C., García-Morabito, E., Veit, H., Zech, R., 2017. Timing and extent of Late Pleistocene glaciation in the arid Central Andes of Argentina and Chile (22°–41°S). Cuadernos de Investigación Geográfica (Geographical Research Letters) 43, 697718.CrossRefGoogle Scholar
Zhou, J., Lau, K.-M., 1998. Does a monsoon climate exist over South America? Journal of Climate 11, 10201040.2.0.CO;2>CrossRefGoogle Scholar
Zipser, E.J., Cecil, D.J., Liu, C., Nesbitt, S.W., Yorty, D.P., 2006. Where are the most intense thunderstorms on Earth? Bulletin of the American Meteorological Society 87, 10571071.CrossRefGoogle Scholar
Supplementary material: PDF

Quade et al. supplementary material

Quade et al. supplementary material

Download Quade et al. supplementary material(PDF)
PDF 16.9 MB