Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T08:16:02.028Z Has data issue: false hasContentIssue false

The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro

Published online by Cambridge University Press:  20 January 2017

Mike W. Morley*
Affiliation:
Human Origins and Palaeo-Environments (HOPE) Group, Department of Anthropology and Geography, School of Social Sciences and Law, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
Jamie C. Woodward*
Affiliation:
Quaternary Environments and Geoarchaeology Research Group, Geography, School of Environment and Development, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
*
Corresponding authors.
Corresponding authors.

Abstract

Clearly defined distal tephras are rare in rockshelter sediment records. Crvena Stijena, a Palaeolithic site in Montenegro, contains one of the longest (> 20 m) rockshelter sediment records in Europe with deposits ranging in age from Middle Pleistocene to mid-Holocene. A distinctive tephra is clearly exposed within the well stratified record approximately 6.5 m below the present land surface. We present geochemical data to confirm that this tephra is a distal equivalent of the Campanian Ignimbrite deposits and a product of the largest Late Pleistocene eruption in Europe. Originating in the Campanian volcanic province of southwest Italy, this tephra has been independently dated to 39.3 ka. It is a highly significant chronostratigraphic marker for southern Europe. Macrostratigraphic and microstratigraphic observations, allied with detailed particle size data, show that the tephra layer is in a primary depositional context and was transported into the rockshelter by aeolian processes. This site is unique because the tephra forms an abrupt boundary between the Middle and Upper Palaeolithic records. Before they can be used as chronostratigraphic markers in rockshelter and cave-mouth environments, it is essential to establish the stratigraphic integrity of distal tephras and the mechanisms and pathways involved in their transport and deposition.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accorsi, C.A., Aiello, E., Bartolini, C., Castelletti, L., Rodolfi, G., and Ronchitelli, A. Il giacimento Paleolitico di Serino (Avellino): stratigrafia, 866 ambienti e paletnologia. Atti della Società Toscana di Scienze Naturali, Memorie A 86, (1979). 435487.Google Scholar
Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., and Negendank, J.F.W. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, (1999). 740743.CrossRefGoogle Scholar
Anikovich, M.V., Sinitsyn, A.A., Hoffecker, J.F., Holliday, V.T., Popov, V.V., Lisitsyn, S.N., Forman, S.L., Levkovskaya, G.M., Pospelova, G.A., and Kuz'mina, I.E. Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315, (2007). 223226.CrossRefGoogle ScholarPubMed
Baković, M., Mihailović, B., Mihailović, D., Morley, M.W., Vušović-Lučić, Z., Whallon, R., and Woodward, J.C. Crvena Stijena Excavations 2004–2006, preliminary report. Journal of Eurasian Prehistory 6, (2009). 331.Google Scholar
Barberi, F., Innocenti, F., Lirer, L., Munno, R., Pescatore, T., and Santacroce, R. The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bulletin of Volcanology 41, (1978). 1031.CrossRefGoogle Scholar
Barker, G., Antoniadou, A., Armitage, S., Brooks, I., Candy, I., Connell, K., Douka, K., Drake, N., Farr, L., Hill, E., Hunt, C., Inglish, R., Jones, S., Lane, C., Luccharini, G., Meneely, J., Morales, J., Mutri, G., Prendergast, A., Rabett, R., Reade, H., Reynolds, T., Russell, N., Simpson, D., Smith, B., Stimpson, C., Twati, M., and White, K. The Cyrenaican Prehistory Project 2010: the fourth season of investigations of the Haua Fteah cave and its landscape, and further results from the 2007-2009 fieldwork. Libyan Studies 41, (2010). 6388.CrossRefGoogle Scholar
Basler, D. Crvena Stijena: Zbornik radova. (1975). Zajednica Kulturnih Ustanova, Nikšić.Google Scholar
Beer, J., Muscheler, R., Wagner, G., Laj, C., Kissel, C., Kubik, P.W., and Synal, H.-A. Cosmogenic nuclides during Isotope Stages 2 and 3. Quaternary Science Reviews 21, (2002). 11291139.CrossRefGoogle Scholar
Blockley, S.P.E., Bronk Ramsey, C., and Higham, T.F.G. The Middle to Upper Palaeolithic transition: dating, stratigraphy, and isochronous markers. Journal of Human Evolution 55, (2008). 764771.CrossRefGoogle Scholar
Brunnacker, K. Die Sedimente der Crvena Stijena. Basler, Đ. Crvena Stijena: Zbornik Radova. (1975). Zajednica Kulturnih Ustanova, Nikšić. 171203.Google Scholar
Bullock, P., Federoff, N., Jongerius, A., Stoops, G., Tursina, T., and Babel, U. Handbook for Soil Thin Section Description. (1985). Waine Research Publications, Wolverhampton.Google Scholar
Calanchi, N., and Dinelli, E. Tephrostratigraphy of the last 170 ka in sedimentary successions from the Adriatic Sea. Journal of Volcanology and Geothermal Research 177, (2008). 8195.CrossRefGoogle Scholar
Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G., and Ort, M. Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research 75, (1997). 183219.CrossRefGoogle Scholar
Conard, N.J. When Neanderthals and Modern Humans Met. (2006). Tübingen Publications in Prehistory, Kerns Verlag, Tübingen.Google Scholar
Conard, N.J., and Bolus, M. Radiocarbon dating the late Middle Paleolithic and the Aurignacian of the Swabian Jura. Journal of Human Evolution 55, (2008). 886897.CrossRefGoogle ScholarPubMed
Courty, M.-A., and Vallverdu, J. The microstratigraphic record of abrupt climate changes in cave sediments of the Western Mediterranean. Geoarchaeology: An International Journal 16, (2001). 467499.CrossRefGoogle Scholar
Cramp, A., Vitaliano, C.J., and Collins, M.B. Identification and dispersion of the Campanian ash layer (Y-5) in the sediments of the Eastern Mediterranean. Geo-Marine Letters 9, (1989). 1925.CrossRefGoogle Scholar
De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson, W.A., Spera, F.J., and Belkin, H.E. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73, (2001). 4765.CrossRefGoogle Scholar
Davies, S.M., Elmquist, M., Bergman, J., Wohlfarth, B., and Hammarlund, D. Cryptotephra sedimentation processes within two lacustrine sequences from west central Sweden. Holocene 17, (2007). 319330.CrossRefGoogle Scholar
Dennell, R. Dispersal and colonisation, long and short chronologies: how continuous is the Early Pleistocene record for hominids outside East Africa?. Journal of Human Evolution 45, (2003). 421440.CrossRefGoogle ScholarPubMed
Di Vito, M.A., Sulpizio, R., Zanchetta, G., and D'Orazio, M. The late Pleistocene pyroclastic deposits of the Campanian Plain: New insights into the explosive activity of Neapolitan volcanoes. Journal of Volcanology and Geothermal Research 177, (2008). 1948.CrossRefGoogle Scholar
Farrand, W.R. Depositional history of Franchthi Cave: Stratigraphy, Sedimentology, and Chronology. (2000). Indiana University Press, Indiana.Google Scholar
Fedele, F.G., Giaccio, B., and Hajdas, I. Timescales and cultural process at 40, 000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution 55, (2008). 834857.CrossRefGoogle Scholar
Fedele, F.G. Ecosystem impact of the Campanian ignimbrite eruption in Late Pleistocene Europe. Quaternary Research 57, (2002). 420424.CrossRefGoogle Scholar
Fedele, F.G., Giaccio, B., Isaia, R., and Orsi, G. The Campanian Ignimbrite eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-resolution investigation. Geophysical monograph 139, (2003). 301325.Google Scholar
Fedele, F.G., Giaccio, B., Isaia, R., Orsi, G., Carroll, M., and Scaillet, B. The Campanian Ignimbrite factor: towards a reappraisal of the Middle to Upper Palaeolithic ‘transition’. Grattan, J., and Torrence, R. Living Under the Shadow: the Cultural Impacts of Volcanic Eruptions, One World Archaeology vol. 53. (2007). Left Coast Press, California. 1941.Google Scholar
Finlayson, C., Pacheco, F.G., Rodríguez-Vidal, J., Fa, D.A., López, J.M.G., Pérez, A.S., Finlayson, G., Allue, E., Preysler, J.B., and Cáceres, I. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, (2006). 850853.CrossRefGoogle ScholarPubMed
Fumanal, M.P. La Cueva de Castelcivita. Estudio sedimentológico. Gambassini, P. Il Paleolitico di Castelcivita, culture e ambiente. (1997). Napoli, Electa Napoli. 1932.Google Scholar
Gamble, C. The Palaeolithic Societies of Europe. (1999). Cambridge University Press, Cambridge.Google Scholar
Giaccio, B., Hajdas, I., Peresani, M., Fedele, F.G., and Isaia, R. The Campanian Ignimbrite and its relevance for the timing of the Middle to Upper Palaeolithic shift. Conard, N.J. When Neanderthals and Modern Humans Met. (2006). Tübingen Publications in Prehistory, Kerns Verlag, Tübingen. 343375.Google Scholar
Giaccio, B., Isaia, R., Fedele, F.G., Di Canzio, E., Hoffecker, J., Ronchitelli, A., Sinitsyn, A.A., Anikovich, M., Lisitsyn, S.N., and Popov, V.V. The Campanian Ignimbrite and Codola tephra layers: Two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and Eastern Europe. Journal of Volcanology and Geothermal Research 177, (2008). 208226.CrossRefGoogle Scholar
Guillou, H., Singer, B.S., Laj, C., Kissel, C., Scaillet, S., and Jicha, B.R. On the age of the Laschamp geomagnetic excursion. Earth and Planetary Science Letters 227, (2004). 331343.CrossRefGoogle Scholar
Hoffecker, J.F., Holliday, V.T., Anikovich, M.V., Sinitsyn, A.A., Popov, V.V., Lisitsyn, S.N., Levkovskaya, G.M., Pospelova, G.A., Forman, S.L., and Giaccio, B. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution 55, (2008). 858870.CrossRefGoogle Scholar
Hughen, K., Lehman, S., Southon, J., Overpeck, J., Marchal, O., Herring, C., and Turnbull, J. 14 C activity and global carbon cycle changes over the past 50, 000 years. Science 303, (2004). 202207.CrossRefGoogle Scholar
Hughes, P.D., and Woodward, J.C. Glacial and Periglacial Environments. Woodward, J.C. The Physical Geography of the Mediterranean. (2009). Oxford University Press, 353383.Google Scholar
Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., and Adamson, K. Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quaternary Science Reviews 29, (2010). 36903708.CrossRefGoogle Scholar
Jöris, O., Fernandez, E.A., and Weninger, B. Radiocarbon evidence of the Middle to Upper Palaeolithic transition in southwestern Europe. Trabajos de Prehistoria 60, (2003). 1538.CrossRefGoogle Scholar
Jöris, O., and Street, M. At the end of the 14C time scale—the Middle to Upper Paleolithic record of western Eurasia. Journal of Human Evolution 55, (2008). 782802.CrossRefGoogle ScholarPubMed
Karavanic, I., and Smith, F.H. More on the Neanderthal problem: The Vindija case. Current Anthropology 41, (2000). 838840.CrossRefGoogle Scholar
Keller, J., Ryan, W.B.F., Ninkovich, D., and Altherr, R. Explosive volcanic activity in the Mediterranean over the past 200, 000 yr as recorded in deep-sea sediments. Bulletin of the Geological Society of America 89, (1978). 591604.2.0.CO;2>CrossRefGoogle Scholar
Kourampas, N., Simpson, I.A., Perera, N., Deraniyagala, S.U., and Wijeyapala, W.H. Rockshelter sedimentation in a dynamic tropical landscape: Late Pleistocene–Early Holocene archaeological deposits in Kitulgala Beli-lena, southwestern Sri Lanka. Geoarchaeology 24, (2009). 677714.CrossRefGoogle Scholar
Kozlowski, J.K. Early Human Migrations: Incipient Stages of Old World Peopling. Diogenes 211, (2006). 922.CrossRefGoogle Scholar
Kozlowski, J.K. The Middle and the early Upper Paleolithic around the Black Sea. Akazawa, T., Aoki, K., and Bar Yosef, O. Neanderthals and Modern Humans in Western Asia. (1998). Plenum Press, New York. 461482.Google Scholar
Kozlowski, J.K., Laville, H., and Ginter, B. Temnata cave: excavations in Karlukovo Karst Area. (1992). Jagiellonian University, Kraków, Bulgaria.Google Scholar
Laser-40 Ar/39 Ar-Datierungen an distalen marinen Tephren des jung-quartären Mediterranen Vulkanismus (Ionisches Meer, METEOR-Fahrt 25/4). Dissertation Universität Freiburg Google Scholar
Lane, C.S., Blockley, S.P.E., Lotter, A.F., Finsinger, W., Filippi, M.L., and Matthews, I.P. A regional tephrostratigraphic framework for central and southern European climate archives during the Last Glacial to Interglacial Transition: comparisons north and south of the Alps. Quaternary Science Reviews (2011). (in press) Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, (1986). 745750.CrossRefGoogle Scholar
Lewin, J., and Woodward, J.C. Karst geomorphology and environmental change. Woodward, J.C. The Physical Geography of the Mediterranean. (2009). Oxford University Press, 287317.Google Scholar
Lowe, J.J., Blockley, S., Trincardi, F., Asioli, A., Cattaneo, A., Matthews, I.P., Pollard, M., and Wulf, S. Age modelling of late Quaternary marine sequences in the Adriatic: Towards improved precision and accuracy using volcanic event stratigraphy. Continental Shelf Research 27, (2007). 560582.CrossRefGoogle Scholar
Lowe, D.J. Globalization of tephrochronology: new views from Australasia. Progress in Physical Geography 32, (2008). 311335.CrossRefGoogle Scholar
Lund, S.P., Schwartz, M., Keigwin, L., and Johnson, T. Deep-sea sediment records of the Laschamp geomagnetic field excursion (c. 41, 000 calendar years before present). Journal of Geophysical Research 110, (2005). B04101 CrossRefGoogle Scholar
Marciano, R., Munno, R., Petrosino, P., Santangelo, N., Santo, A., and Villa, I. Late Quaternary tephra layers along the Cilento coastline (southern Italy). Journal of Volcanology and Geothermal Research 177, (2008). 227243.CrossRefGoogle Scholar
Margari, V., Pyle, D.M., Bryant, C., and Gibbard, P. Mediterranean tephra stratigraphy revisited: results from a long terrestrial sequence from Lesvos Island, Greece. Journal of Volcanology and Geothermal Research 163, (2007). 3454.CrossRefGoogle Scholar
Matarazzo, T., Berna, F., and Goldberg, P. Occupation surfaces sealed by the Avellino eruption of Vesuvius at the Early Bronze Age village of Afragola in southern Italy: A micromorphological analysis. Geoarchaeology 25, (2010). 437466.CrossRefGoogle Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M., and Tric, E. Geomagnetic field control of 14 C production over the last 80 ky: implications for the radiocarbon time-scale. Geophysical Research Letters 18, (1991). 18851888.CrossRefGoogle Scholar
Mellars, P. Neanderthals and the modern human colonization of Europe. Nature 432, (2004). 461465.CrossRefGoogle ScholarPubMed
Morley, M.W., (2007). Mediterranean Quaternary Rockshelter Sediment Records: A Multi-Proxy Approach to Environmental Reconstruction. University of Manchester Unpublished PhD Thesis.Google Scholar
Munno, R., and Petrosino, P. New constraints on the occurrence of Y-3 Upper Pleistocene tephra marker layer in the Tyrrhenian Sea. Quaternario 17, (2004). 1120.Google Scholar
Munno, R., and Petrosino, P. The late Quaternary tephrostratigraphical record of the San Gregorio Magno basin (southern Italy). Journal of Quaternary Science 22, (2007). 247266.CrossRefGoogle Scholar
Narcisi, B., and Vezzoli, L. Quaternary stratigraphy of distal tephra layers in the Mediterranean-an overview. Global and Planetary Change 21, (1999). 3150.CrossRefGoogle Scholar
Oppenheimer, C., and Pyle, D.M. Volcanoes. Woodward, J.C. The Physical Geography of the Mediterranean. (2009). Oxford University Press, Oxford. 435468.Google Scholar
Palma di Cesnola, A. Aurignacian and early Gravettian of Paglicci cave–Mount Gargano. L'Anthropologie 110, (2006). 355370.CrossRefGoogle Scholar
Paterne, M., Kallel, N., Labeyrie, L., Vautravers, M., Duplessy, J.C., Rossignol-Strick, M., Cortijo, E., Arnold, M., and Fontugne, M. Hydrological relationship between the North Atlantic Ocean and the Mediterranean Sea during the past 15-75 kyr. Paleoceanography 14, (1999). 626638.CrossRefGoogle Scholar
Paterne, M., Guichard, F., Duplessy, J.C., Siani, G., Sulpizio, R., and Labeyrie, J. A 90,000–200,000 yrs marine tephra record of Italian volcanic activity in the Central Mediterranean Sea. Journal of Volcanology and Geothermal Research 177, (2008). 187196.CrossRefGoogle Scholar
Pawlikowski, M. Analysis of tephra layers from TD-II and TD-V excavations. Kozlowski, J.K., Laville, H., and Ginter, B. Excavations in Karlukovo Karst Area, Bulgaria, Stratigraphy and environment. Archaeology of Gravettian layers, Vol.1, pt.1. (1992). Jagiellonian University, Kraków. 8998.Google Scholar
Pettitt, P.B., Davies, W., Gamble, C.S., and Richards, M.B. Palaeolithic radiocarbon chronology: quantifying our confidence beyond two half-lives. Journal of Archaeological Science 30, (2003). 16851693.CrossRefGoogle Scholar
Pyle, D.M. The thickness, volume and grainsize of tephra fall deposits. Bulletin of Volcanology 51, (1989). 115.CrossRefGoogle Scholar
Pyle, D.M., Ricketts, G.D., Margari, V., Van Andel, T.H., Sinitsyn, A.A., Praslov, N.D., and Lisitsyn, S. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews 25, (2006). 27132728.CrossRefGoogle Scholar
Roebroeks, W. Time for the Middle to Upper Paleolithic transition in Europe. Journal of Human Evolution 55, (2008). 918926.CrossRefGoogle ScholarPubMed
Rosi, M., Vezzoli, L., Castelmenzano, A., and Grieco, G. Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy). Journal of Volcanology and Geothermal Research 91, (1999). 179198.CrossRefGoogle Scholar
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D.J., and Joron, J.L. Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research 177, (2008). 118.CrossRefGoogle Scholar
Schwarz, H.P., and Rink, W.J. Dating methods for sediments of caves and rockshelters. Geoarchaeology: An International Journal 16, (2001). 355371.CrossRefGoogle Scholar
Self, S. The effects and consequences of very large explosive volcanic eruptions. Philosophical Transactions of the Royal Society A 364, (2006). 20732097.CrossRefGoogle ScholarPubMed
Sinitsyn, A.A., and Hoffecker, J.F. Radiocarbon dating and chronology of the Early Upper Paleolithic at Kostenki. Quaternary International 152, (2006). 164174.CrossRefGoogle Scholar
Sparks, S., Self, S., Grattan, J., Oppenheimer, C., Pyle, D., Rymer, H., (2005). Super-eruptions: global effects and future threats. Report of a Geological Society of London Working Group. Geological Society of London, second (print) edition.Google Scholar
Stoops, G. Guidelines for analysis and description of soil and regolith thin sections. (2003). Soil Science Society of America, Madison, WI.Google Scholar
St Seymour, K.S., and Christanis, K. Correlation of a tephra layer in Western Greece with a Late Pleistocene eruption in the Campanian province, Italy. Quaternary Research 43, (1995). 4554.CrossRefGoogle Scholar
St Seymour, K.S., Christanis, K., Bouzinos, A., Papazisimou, S., Papatheodorou, G., Moran, E., and Dénès, G. Tephrostratigraphy and tephrochronology in the Philippi peat basin, Macedonia, Northern Hellas (Greece). Quaternary International 121, (2004). 5365.CrossRefGoogle Scholar
Thunell, R., Federman, A., Sparks, S., and Williams, D. The age, origin, and volcanological significance of the Y-5 ash layers in the Mediterranean. Quaternary Research 12, (1979). 241253.CrossRefGoogle Scholar
Ton-That, T., Singer, B., and Paterne, M. 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth and Planetary Science Letters 184, (2001). 645658.CrossRefGoogle Scholar
Van Andel, T., and Davies, W. Neanderthals and modern humans in the European landscape during the last glaciation . (2004). McDonald Institute Monograph, Cambridge.Google Scholar
Vezzoli, L. Tephra layers in Bannock basin (eastern Mediterranean). Marine Geology 100, (1991). 2134.CrossRefGoogle Scholar
Vinci, A. Distribution and chemical composition of tephra layers from eastern Mediterranean abyssal sediments. Marine Geology 64, (1985). 143155.CrossRefGoogle Scholar
Vitaliano, C.J., Taylor, S.R., Farrand, W.R., and Jacobsen, T.W. Tephra layer in Franchthi cave, Peloponnesos, Greece. Self, S., and Sparks, R.S.J. Tephra Studies, Nato Advanced Study Institutes Series, C 75. (1981). Reidel, Dordrecht. 373379.Google Scholar
Voelker, A.H.L., Grootes, P.M., Nadeau, M.J., and Sarntheim, M. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the earth's magnetic field intensity. Radiocarbon 42, (2000). 437452.CrossRefGoogle Scholar
Wagner, B., Sulpizio, R., Zanchetta, G., Wulf, S., Wessels, M., Daut, G., and Nowaczyk, N. The last 40 ka tephrostratigraphic record of Lake Ohrid, Albania and Macedonia: a very distal archive for ash dispersal from Italian volcanoes. Journal of Volcanology and Geothermal Research 177, (2008). 7180.CrossRefGoogle Scholar
Woodward, J.C., and Bailey, G.N. Sediment sources and terminal Pleistocene geomorphological processes recorded in rockshelter sequences in Northwest Greece. Foster, I.D.L. Tracers in geomorphology. (2000). Wiley, Chichester. 521551.Google Scholar
Woodward, J.C., and Goldberg, P. The sedimentary records in Mediterranean rockshelters and caves: Archives of environmental change. Geoarchaeology 16, (2001). 327354.CrossRefGoogle Scholar
Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Karkanas, P., and Kotjabopoulou, E. Quantitative sourcing of slackwater deposits at Boila rockshelter: A record of late-glacial flooding and Palaeolithic settlement in the Pindus Mountains, northern Greece. Geoarchaeology: An International Journal 16, (2001). 501536.CrossRefGoogle Scholar
Wulf, S., Kraml, M., Brauer, A., Keller, J., and Negendank, J.F.W. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary International 122, (2004). 730.CrossRefGoogle Scholar
Zanchetta, G., Sulpizio, R., Giaccio, B., Siani, G., Paterne, M., Wulf, S., and D'Orazio, M. The Y-3 tephra: A Last Glacial stratigraphic marker for the central Mediterranean basin. Journal of Volcanology and Geothermal Research 177, (2008). 145154.CrossRefGoogle Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Grönvold, K., Germani, M.S., Whitlow, S., Twickler, M.S., Taylor, K., (1997). Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores. Journal of Geophysical Research-Oceans 102, 26,625-26,640.CrossRefGoogle Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., and Twickler, M.S. A 110, 000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45, (1996). 109118.CrossRefGoogle Scholar