Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:30:55.967Z Has data issue: false hasContentIssue false

Assessing the performance of a foraminifera-based transfer function to estimate sea-level changes in northern Portugal

Published online by Cambridge University Press:  20 January 2017

Eduardo Leorri*
Affiliation:
Department of Geological Sciences, East Carolina University, Graham Building, Room 103b, Greenville, NC 27858-4353, USA
Francisco Fatela
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro e Departamento de Geologia, Campo Grande, 1749-016, Lisboa, Portugal
Alejandro Cearreta
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apartado 644, Bilbao 48080, Spain
João Moreno
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro e Departamento de Geologia, Campo Grande, 1749-016, Lisboa, Portugal
Carlos Antunes
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, IDL-LATTEX e Departamento de Engenharia Geográfica, Geofísica e Energia, Campo Grande, 1749-016 Lisboa, Portugal
Teresa Drago
Affiliation:
Instituto Nacional de Recursos Biológicos I.P., L-IPIMAR, 8700-305 Olhão, Portugal
*
Corresponding author. Fax: +1 252 328 4391.

Abstract

We assessed the performance of a transfer function model for sea-level studies using salt-marsh foraminifera from two estuaries of northern Portugal. An independent data set of 12 samples and 13 sub-fossil samples from a core were used to evaluate if reconstructions and errors derived from current models are adequate. Initial transfer function models provided very strong results as indicated by cross-validation (component 2; r2 = 0.80–0.82; RMSEP ranged from 10.7 to 12.3 cm) and improved its performance by ca. 10% when sample size reached ca. 50. Results derived using an independent test data set indicate that cross-validation is a very effective approach and produces conservative errors when compared to observed errors. We additionally explored the possible effect of transforming the concentration data into percent in the error estimations by comparing the results obtained based on the use of both concentration and compositional data. Results indicate that this type of transformation does not affect the performance of the transfer function. Results derived from a reconstruction of sub-fossil samples from a core indicate that high-resolution sea-level reconstructions are possible, but show that depositional environments have to be selected carefully in order to minimize the impact of possible taphonomical loss.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, A., (1996). Causas e processos da dinâmica sedimentar na evolução actual do litoral do alto Minho. Unpublished PhD thesis, Universidade de Minho, Braga., 442 pp.Google Scholar
Alves, A., (2003). O estuário do rio Lima: pressão antrópica e caracterização ambiental. Ciências da Tierra (UNL). Special publication 5, H5-H9 (CD-ROM).Google Scholar
Bettencourt, A., Ramos, L., Gomes, V., Dias, J.M.A., Ferreira, G., Silva, M., Costa, L., (2003). Estuários Portugueses. Ed. INAG — Ministério das Cidades. Ordenamento do Território e Ambiente, Lisboa., 311 pp.Google Scholar
Birks, H.J.B. Maddy, D., and Brew, J.S. Quantitative paleoenvironmental reconstructions. Statistical Modelling of Quaternary Science Data, Technical Guide 5, (1995). Quaternary Research Association, Cambridge. 161254.Google Scholar
Birks, H.J.B. Numerical tools in palaeolimnology — progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307332.CrossRefGoogle Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., and ter Braak, C.J.T. Diatom and pH reconstruction. Philosophical Transactions of the Royal Society of London 327, (1990). 263278.Google Scholar
Catalão, J. Iberia-Azores gravity model (IAGRM) using multi-source gravity data. Earth, Planets, Space 58, (2006). 277286.CrossRefGoogle Scholar
Church, J.A., White, N.J., Aarup, T., Wilson, W.S., Woodworth, P.L., Domingues, C.M., Hunter, J.R., and Lambeck, K. Understanding global sea levels: past, present and future. Sustainability Science 3, (2008). 922.CrossRefGoogle Scholar
Culver, S.J., and Horton, B.P. Infaunal marsh foraminifera from the Outer Banks, North Carolina, USA. Journal of Foraminiferal Research 35, (2005). 148170.CrossRefGoogle Scholar
Debenay, J.P., Guiral, D., and Parr, M. Ecological factors acting on the microfauna in mangrove swamps. The case of foraminiferal assemblages in French Guiana. Estuarine. Coastal and Shelf Science 55, (2002). 509533.CrossRefGoogle Scholar
Edwards, R.J., van de Plassche, O., Gehrels, W.R., and Wright, A.J. Assessing sea-level data from Connecticut, USA, using a foraminiferal transfer function for tide level. Marine Micropaleontology 51, (2004). 239255.CrossRefGoogle Scholar
Fatela, F., and Taborda, R. Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology 45, (2002). 169174.CrossRefGoogle Scholar
Fatela, F., Moreno, J., Moreno, F., Araujo, M.F., Valente, T., Antunes, C., Taborda, R., Andrade, C., and Drago, T. Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal). Marine Micropaleontology 70, (2009). 7088.CrossRefGoogle Scholar
Gehrels, W.R. Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Maine, USA. Holocene 10, (2000). 367376.CrossRefGoogle Scholar
Gehrels, W.R., Hayward, B.W., Newnham, R.M., and Southall, K.E. A 20th century sea-level acceleration in New Zealand. Geophysical Research Letters 35, (2008). L02717 CrossRefGoogle Scholar
Gehrels, W.R., Kirby, J.R., Prokoph, A., Newnham, R.M., Achterberg, E.P., Evans, E.H., Black, S., and Scott, D.B. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews 24, (2005). 20832100.CrossRefGoogle Scholar
Gehrels, W.R., Roe, H.M., and Charman, D.J. Foraminifera, testate amoebae and diatoms as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach. Journal of Quaternary Science 16, (2001). 201220.CrossRefGoogle Scholar
Goldstein, S.T., Watkins, G.T., and Kuhn, R.M. Microhabitats of salt marsh foraminifera: St. Catherines Island, Georgia, USA. Marine Micropaleontology 26, (1995). 1729.CrossRefGoogle Scholar
Guilbault, J.P., Clague, J.J., and Lapointe, M. Foraminiferal evidence for the amount of coseismic subsidence during a late Holocene earthquake on Vancouver Island, west coast of Canada. Quaternary Science Reviews 15, (1996). 931937.CrossRefGoogle Scholar
Hamilton, S., and Shennan, I. Late Holocene relative sea-level changes and the earthquake deformation cycle around upper Cook inlet, Alaska. Quaternary Science Reviews 24, (2005). 14791498.CrossRefGoogle Scholar
Hayward, B.W., and Hollis, C.J. Brackish foraminifera in New Zealand: a taxonomic and ecologic review. Micropaleontology 40, (1994). 185222.CrossRefGoogle Scholar
Hayward, B.W., Scott, G.C., Grenfell, H.R., Carter, R., and Lipps, J.H. Techniques for estimation of tidal elevation and confinement (salinity) histories of sheltered harbours and estuaries using benthic foraminifera: examples from New Zealand. Holocene 14, (2004). 218232.CrossRefGoogle Scholar
Hippensteel, S.P., Martin, R.E., Nikitina, D., and Pizzuto, J. The transformation of Holocene marsh foraminifera assemblages, middle Atlantic coast, USA: implications for Holocene sea-level changes. Journal of Foraminiferal Research 30, (2000). 272293.CrossRefGoogle Scholar
Horton, B.P. The contemporary distribution of intertidal foraminifera of Cowpen Marsh, Tees Estuary, UK: implications for studies of Holocene sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 149, (1999). 127149.CrossRefGoogle Scholar
Horton, B.P., and Edwards, R.J. Seasonal distributions of foraminifera and their implications for sea-level studies. SEPM. Special Publication 75, (2003). 2130.Google Scholar
Horton, B.P., and Edwards, R.J. Quantifying Holocene sea level change using intertidal foraminifera: lessons from the British isles. Journal of Foraminiferal Research Special Publication 40, (2006). 197.Google Scholar
Horton, B.P., Edwards, R.J., and Lloyd, J.M. A foraminiferal-based transfer function: implications for sea-level studies. Journal of Foraminiferal Ressearch 29, (1999). 117129.CrossRefGoogle Scholar
Horton, B.P., Gibbard, P.L., Milne, G.M., and Stargardt, J.M. Holocene sea levels and paleoenvironments of the Malay-Thai Peninsula, Southeast Asia. Holocene 15, (2005). 11991213.CrossRefGoogle Scholar
IPCC, Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge. 996 pp.Google Scholar
Jevrejeva, S., Grinsted, A., Moore, J.C., and Holgate, S. Nonlinear trends and multiyear cycles in sea level records. Journal of Geophysical Research 111, (2006). C09012 http://dx.doi.org/10.1029/2005JC003229CrossRefGoogle Scholar
Jevrejeva, S., Moore, J.C., Grinsted, A., and Woodworth, P.L. Recent global sea level acceleration started over 200 years ago?. Geophysical Research Letters 35, (2008). L08715 http://dx.doi.org/10.1029/2008GL033611CrossRefGoogle Scholar
Juggins, S. C2, Version 1.4. Newcastle University, UK. web site http://www.campus.ncl.ac.uk/staff/Stephen.Juggins/index.html (2004). Google Scholar
Kemp, A.C., Horton, B.P., Culver, S.J., Corbett, D.R., van de Plassche, O., Gehrels, W.R., and Douglas, B.C. The timing and magnitude of recent accelerated sea-level rise (North Carolina, USA). Geology 37, (2009). 10351038.CrossRefGoogle Scholar
Korsman, T., and Birks, H.J.B. Diatom-based water chemistry reconstructions from northern Sweden: a comparison of reconstruction techniques. Journal of Paleolimnology 15, (1996). 6577.CrossRefGoogle Scholar
Kucera, M., and Malmgren, B.A. Logratio transformation of compositional data — a resolution of the constant sum constraint. Marine Micropaleontology 34, (1998). 117120.CrossRefGoogle Scholar
Leorri, E., and Cearreta, A. Recent sea-level changes in the southern Bay of Biscay: transfer function reconstructions from salt-marshes compared to instrumental data. Scientia Marina 73, (2008). 287296.CrossRefGoogle Scholar
Leorri, E., Gehrels, R.W., Horton, B.P., Fatela, F., and Cearreta, A. Distribution of foraminiferal assemblages in salt marshes along the east North Atlantic coast: tools to reconstruct past sea-level variations. Quaternary International 221, (2010). 104115.CrossRefGoogle Scholar
Leorri, E., Horton, B.P., and Cearreta, A. Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: implications for sea-level studies in the Bay of Biscay. Marine Geology 251, (2008). 6074.CrossRefGoogle Scholar
Line, J.M., Ter Braak, C.J.T., and Birks, H.J.B. WACALIB version 3.3-A computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. Journal of Paleolimnology 10, (1994). 147152.CrossRefGoogle Scholar
Loeblich, A.R., Tappan, H., (1988). Foraminiferal Genera and their Classification: Van Nostrand Reinhold Company. v. 1, 970 p., v. 2, 847 pl.Google Scholar
Loubere, P., and Qian, H. Reconstructing paleoecology and paleoenvironmental variable using factor analysis and regression: some limitations. Marine Micropaleontology 31, (1997). 205217.CrossRefGoogle Scholar
Lutze, G.F. Zum Farben Rezenter Foraminiferen. Meyniana 14, (1964). 4347.Google Scholar
Massey, A.C., Gehrels, W.R., Charman, D.J., and White, S.V. An intertidal foraminifera-based transfer function for reconstructing Holocene sea-level change in southwest England. Journal of Foraminiferal Research 36, (2006). 215232.CrossRefGoogle Scholar
Mekik, F., and Loubere, P. Quantitative paleo-estimation: hypothetical experiments with extrapolation and the no-analog problem. Marine Micropaleontology 36, (1999). 225248.CrossRefGoogle Scholar
Miller, L., and Douglas, B.C. Gyre-scale atmospheric pressure variations and their relation to 19th and 20th century sea level rise. Geophysical Research Letters 34, (2007). L16602 CrossRefGoogle Scholar
Moreno, J., Fatela, F., Andrade, C., Cascalho, J., Valente, T., Moreno, F., and Drago, T. Living foraminiferal assemblages from Minho/Coura estuary (Northern Portugal): a stressful environment. Thalassas 21, (2005). 1728.Google Scholar
Moreno, J., Valente, T., Moreno, F., Fatela, F., Guise, L., and Patinha, C. Calcareous foraminifera occurrence and calcite-carbonate equilibrium conditions — a case study in Minho/Coura estuary (N Portugal). Hydrobiologia 597, (2007). 177184.CrossRefGoogle Scholar
Murray, J.W. Ecology and palaeoecology of benthic foraminifera. (1991). Longman, Harlow. 397 pp.Google Scholar
Murray, J.W., and Bowser, S.S. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize “living” foraminifera: a review. Journal of Foraminiferal Research 30, (2000). 6670.CrossRefGoogle Scholar
Patterson, R.T., Gehrels, W.R., Belknap, D.F., and Dalby, A.P. The distribution of salt marsh foraminifera at Little Dipper Harbour, New Brunswick, Canada: implications for development of widely applicable transfer functions in sea-level research. Quaternary International 120, (2004). 185194.CrossRefGoogle Scholar
Phleger, F.B. Patterns of marsh foraminifera, Galveston Bay, Texas. Limnology and Oceanography 10, (1965). 169180.CrossRefGoogle Scholar
Phleger, F.B. Foraminiferal populations and marine marsh processes. Limnology and Oceanography 15, (1970). 522534.CrossRefGoogle Scholar
Ramos, S., Cowen, R.K., , P., and Bordalo, A.A. Temporal and spatial distributions of larval fish assemblages in the Lima estuary (Portugal). Estuarine, Coastal and Shelf Science 66, (2006). 303314.CrossRefGoogle Scholar
Sejrup, H.P., Birks, H.P.B., Kristensen, D.K., and Madsen, H. Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin. Marine Micropaleontology 53, (2004). 197226.CrossRefGoogle Scholar
Southall, K.E., Gehrels, W.R., and Hayward, B.W. Foraminifera in a New Zealand salt marsh and their suitability as sea-level indicators. Marine Micropaleontology 60, (2006). 167179.CrossRefGoogle Scholar
Szkornik, K. Assessing the accuracy of diatom-based transfer function in Holocene sea-level studies: An example from Ho Bugt, western Denmark. INQUA-IGCP 495 meeting, Decadal to millenium-scale land-ocean ineractions in the geological record: Blueprints for the 21st century?. (2009). Egmond Aan Zee, Netherlands.Google Scholar
Telford, R.J., and Birks, H.J.B. The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance. Quaternary Science Reviews 24, (2005). 21732179.CrossRefGoogle Scholar
ter Braak, C.J.F., and Juggins, S. Weighted averaging partial least-squared regression (WA-PLS) — an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, (1993). 485502.CrossRefGoogle Scholar
ter Braak, C.J.F., and Smilauer, P. CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4). (1998). Microcomputer Power, Ithaca, New York. 352 ppGoogle Scholar
ter Braak, C.J.F., Juggins, S., Birks, H.J.B., and van der Voet, H. Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species-environment calibration. Chapter 25. Patil, G.P., and Rao, C.R. Multivariate Environmental Statistics. (1993). Elsevier Science Publishers B.V, Amsterdam. 525560.Google Scholar
Tobin, R., Scott, D.B., Collins, E.S., and Medioli, F.S. Infaunal benthic foraminifera in some north American marshes and their influence on fossil assemblages. Journal of Foraminiferal Research 35, (2005). 130147.CrossRefGoogle Scholar
Valente, T., Fatela, F., Moreno, J., Moreno, F., Guise, L., and Patinha, C. A comparative study of the influence of geochemical parameters on the distribution of foraminiferal assemblages in two distinctive tidal marshes. Journal of Coastal Research SI 56, (2009). 14391443. Proceedings of the 10th International Coastal Symposium Google Scholar
Walton, W.R. Techniques for recognition of living foraminifera. Journal of Foraminiferal Research Special Publication 3, (1952). 5660.Google Scholar
Woodroffe, S.A. Recognising subtidal foraminiferal assemblages: implications for quantitative sea-level reconstructions using a foraminifera-based transfer function. Journal of Quaternary Science (2009). http://dx.doi.org/10.1002/jqs.1230CrossRefGoogle Scholar