Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T06:12:49.061Z Has data issue: false hasContentIssue false

Assemblage Data and Bone and Teeth Modifications as an Aid to Paleoenvironmental Interpretations of the Open-Air Pleistocene Site of Tighenif (Algeria)

Published online by Cambridge University Press:  20 January 2017

Yannicke Dauphin
Affiliation:
Laboratoire de Paléontologie, URA 723 du CNRS, Bât. 504, Université Paris 11-Orsay, 91405 Orsay, Cedex, France
Casimir Kowalski
Affiliation:
Institut of Systematic and Experimental Zoology, Polska Akademia Nauk, ul. Slawkowska 17, 31-016 Krakow, Poland
Christiane Denys
Affiliation:
Laboratoire de Paléontologie, URA 327 du CNRS, CC 64, Université Montpellier 2, Place E. Bataillion, 34095 Montpellier, Cedex 05, France; et Laboratoire des Mammifereses et Oiseaux, Museum National d'Histoire Naturelle, 55 rue Buffon, 75005 Paris, France

Abstract

Variations in the proportions of the various groups of Rodentia collected from eight stratigraphic levels at Tighenif had previously been interpreted as representing environmental (climatic) changes. However, the processes involved in the formation of assemblages are still not well understood. Examination of fragmentation, crystallinity, and chemical composition of fossil bones and teeth, compared to recent samples, shows that a possible explanation for the variations in frequencies is the differential preservation of skeletal remains. Thus, the evaluation of postmortem effects is essential in determining the accuracy of the fossil record. The abundance and composition of remains are governed by the complex interaction of many factors. As indicated by actualistic studies, direct deductions from fauna lists must be avoided as much as possible.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. (1990). “Owls, Caves and Fossils,” pp. 1231. British Museum of Natural History, Museum Publications.Google Scholar
Arambourg, C., and Hoffstetter, R. (1963). Le gisement de Temifine. Archives de llnstitut de Paleontologie Humaine 32, 936.Google Scholar
Dauphin, Y., and Denys, C. (1984). Apports du MEB a l’6tude taphonomique des microvert£brds de Laetoli-Olduvai (Tanzanie) et de Temifmne (Alg6rie). lOe R.A.S.T., 168.Google Scholar
Dauphin, Y., and Denys, C. (1988). Les mgcanismes de formation des gisements de microvert£br£s. 1. composition chimique 61£mentaire des tissus mineralises de quelques rongeurs sauvages actuels. Revue de Paleobiologie 7(2), 307316.Google Scholar
Dauphin, Y. Denys, C., and Denis, A. (1988). Les m£canismes de formation des gisements de micro vert6br6s. Modifications de la composition chimique des os et dents de rongeurs issus de pelotes de regurgitation de rapaces. Comptes Rendus hebdomadaires de I’Academie des Sciences de Paris 307, s6r. Ill, 603608.Google Scholar
Dauphin, Y. Denys, C., and Dents, A. (1989). Les mdcanismes de formation des gisements de micro vertebres. 2. Composition chimique 616mentaire des os et dents de rongeurs provenant de pelotes de regurgitation. Bulletin du Museum national d’Histoire naturelle de Paris 46 s£r., 11, sect. A, 1, 253269.Google Scholar
Dauphin, Y., and Denys, C. (1992). Les m£canismes de formation des gisements de microvert6br6s. Composition chimique des tissus mineralises des rongeurs de Sterkfontein (Afrique de Sud—Pliopl6istoc6ne). Memoire de la Societe geologique de France, Les applications de la g€ologie & la connaissance de l’environnement de l’homme fossile, 160, 101108.Google Scholar
Dauphin, Y., and Denys, C. (1992). Diagen6se differentielle chez les rongeurs fossiles—validity des param£tres gochimiques pour les reconstitutions des regimes alimentaires. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 213223.Google Scholar
Dauphin, Y. (1993). Potential of the Diffuse Reflectance Infrared Fourier Transform (DRIFT) method in paleontological studies of bones. Applied Spectroscopy 47(1), 5355.Google Scholar
Dauphin, Y. (1993). Spectrom6trie infrarouge (DRIFT) des os de rongeurs fossiles de Tighenif (Pleistocene, Algerie). Palaont. Z. 67(3/4), 377395.CrossRefGoogle Scholar
Denys, C. (1985). Nouveaux criteres de reconnaissance des concentrations de microvert6br6s d’aprfcs l’6tude des pelotes de chouettes du Botswana (Afrique australe). Bulletin du Museum national d’Histoire naturelle de Paris 46 s£r., 7, sect. A, 4, 879933.CrossRefGoogle Scholar
Denys, C. Patou, M., and Djemmali, N. (1984). Tighenif (Temifine, Alg6rie): Premiers rfesultats concemant l’origine de accumulation du mattel osseux de ce gisement pleistocene. Comptes Rendus hebdomadaires de I’Academic des Sciences de Paris 299, s£r. II, 481486.Google Scholar
Denys, C. Geraads, D. Hublin, J. J., and Tong, H. (1987). Methode d’6tude taphonomique des microvertdbrds. Application au site pleistocene de Tighenif (Temifine, Algdrie). Archeozoologia 1(2), 5382.Google Scholar
Denys, C., and Mahboubi, M. (1992). Alterations structurales et chimiques des elements squelettiques de pelotes de regurgitation d’un rapace diurae. Bulletin du Museum national d’Histoire naturelle de Paris 46 s£r., 14, sect. A, 1, 229249.Google Scholar
Dodson, P., and Wexlar, D. (1979). Taphonomic investigations of owl pellets. Paleobiology 5, 275284.Google Scholar
Furedi, H., and Walton, A. G. (1998). Transmission and attenuated total reflection (ATR) infrared spectra of bone and collagen. Applied Spectroscopy 22(1), 2326.Google Scholar
Geraads, D. (1981). Bovidae et Giraffidae (Artiodactyla, Mammalia) du Pleistocene de Temifine (Algerie). Bulletin du Museum National d’Histoire naturelle, Paris C3(1), 4786.Google Scholar
Geraads, D. Hublin, J. J. Jaeger, J. J. Tong, H. Sen, S., and Toubeau, P. (1986). The pleistocene hominid site of Temifine, Algeria: New results on the environment, age, and human industries. Quaternary Research 25, 380386.Google Scholar
Jaeger, J. J. (1969). Les rongeurs du Pleistocene moyen de Temifine (Algerie). Comptes Rendus hebdomadaires de I’Academie des Sciences de Paris 269, ser. D, 14921495.Google Scholar
Jaeger, J. J. (1975). “Les Rongeurs du Miocene moyen et superieur du Maghreb,” pp. 1164. These de doctoral d’etat, Universite de Montpellier.Google Scholar
Kid well, S. M., and Bosence, D. W. J. (1991). Taphonomy and timeaveraging of marine shell faunas. In “Taphonomy” (Allison, P. A. and Briggs, D. E. G., Eds.), pp. 116209. Plenum, New York, London.Google Scholar
Kingdon, J. (1974). Hares and Rodents, In “East African Mammals,” Vol. IIB, pp. 704. Univ. of Chicago Press, Chicago.Google Scholar
Kowalski, K. (1990). “Some Problems of the Taphonomy of Small Mammals,” pp. 285296. International Symposium of Evolutionary Phytogeny and Biostratigraphy of Arvicolids, Prague.Google Scholar
Kowalski, K,, and Rzebik-Kowalska, B. (1991). “Mammals of Algeria” (Polish Academy of Sciences, Eds.), pp. 370. Ossolineum Publ.Google Scholar
Korth, W, W. (1979). Taphonomy of microvertebrate fossil assemblages. Annals of the Carnegie Museum of Natural History 48, 235285.Google Scholar
Martin, R. A. (1984). The evolution of cotton rat body mass. In “Contributions in Quaternary Paleontology: A volume in memorial to J. E. Guilday” (Genoways, H. H. and Dawson, M. R., Eds.), pp. 252266, Pittsburgh Carnegie Museum of Natural History, Special Publication 8.Google Scholar
Nowak, R. M. (1991). “Walker’s Mammals of the World,” 5th ed., Vol. II, pp. 1629. The John Hopkins Univ. Press, Baltimore.Google Scholar
Termine, A. S., and Posner, A. S. (1966). Infra-red determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 211, 268270.Google Scholar
Tong, H. (1986). The Gerbillinae (Rodentia) from Tighenif (Pleistocene of Algeria) and their significance. Modern Geology 10, 197214.Google Scholar
Voorhies, M. (1969). Taphonomy and population dynamics of an early Pleistocene vertebrate fauna Knox County Nebraska. “Contributions to Geology,” Univ. of Wyoming Press Special Paper 1.Google Scholar