Article contents
Apparent Radiocarbon Ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada
Published online by Cambridge University Press: 20 January 2017
Abstract
The mean apparent radiocarbon ages of marine shells, colleted alive before the initiation of atomic bomb testing, and also before the main input of dead carbon derived from fossil fuels, are found to be 440 yr for the coast of Norway, 510 yr for Spitsbergen, and 750 yr for Ellesmere Island, Arctic Canada. The relationship between these apparent ages and the oceanic circulation pattern, is discussed. Also possible variations of the apparent ages back in time are discussed.
- Type
- Research Article
- Information
- Copyright
- University of Washington
References
Andrews, J.T., (1972). Recent and fossil growth rates of marine bivalves, Canadian Arctic, and Late-Quaternary Arctic marine environments.
Palaeogeography, Palaeoclimatology, Palaeoecology
11, 157
176.CrossRefGoogle Scholar
Broecker, W.S., Olson, E.A., (1961). Lamont radiocarbon measurements VIII.
Radiocarbon
3, 176
204.CrossRefGoogle Scholar
Collin, A.E., (1966). Canadian Arctic Archipelago and Baffin Bay. Part A. Introduction and Oceanography.
Fairbridge, R.W., The Encyclopedia of Oceanography
Reinhold Publ. Corp, New York
157
160.Google Scholar
Dietrich, G., (1963). General Oceanography.
John Wiley & Sons, Inc, New York. London
588.Google Scholar
Damon, P.E., Long, A., Wallick, E.I., (1973). Dendrochronologic calibration of the carbon-14 time scale.
Proceedings of the Eighth International Radiocarbon Dating Conference
Vol. 1, The Royal Society of New Zealand, Wellington
A28
A43.Google Scholar
Feyling-Hanssen, R.W., (1955). Stratigraphy of the marine Late-Pleistocene of Billefjorden, Vestpitsbergen.
Norsk Polarinstitutt Skrifter
107, 226.Google Scholar
Gulliksen, S., Nydal, R., Lövseth, K., (1972). Further calculations on the 14C exchange between the ocean and the atmosphere.
Proceedings of the Eighth International Radiocarbon Dating Conference
Vol. 1, The Royal Society of New Zealand, Wellington
C63
C72.Google Scholar
Håkansson, S., (1969). University of Lund radiocarbon dates II.
Radiocarbon
11, 430
450.CrossRefGoogle Scholar
Håkansson, S., (1970). University of Lund radiocarbon dates III.
Radiocarbon
12, 534
552.CrossRefGoogle Scholar
Hjort, C., (1973). A sea correction for East Greenland.
Geologiska Föreningens i Stockholm Förhandlingar
95, 132
134.Google Scholar
Houtermans, I., Suess, H.E., Munk, W., (1967). Effect of industrial combustion on the carbon-14 level of atmospheric CO2.
Proceedings of a Symposium on Radioactive Dating and Methods of Low-Level Counting Monaco, 2–10 March 1967IAEA, Vienna
57
68.Google Scholar
Houtermans, I., Suess, H.E., Oeschger, H., (1973). Reservoir models and production rate variations of natural radiocarbon.
Journal of Geophysical Research
78, 1897
1908.CrossRefGoogle Scholar
Mangerud, J., (1972). Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway.
Boreas
1, 143
172.CrossRefGoogle Scholar
Mangerud, J., (in prep.). Late Weichselian sediments containing shells, Foraminifera and pollen, at Ågotnes, western Norway. .Google Scholar
Michael, N.H., Ralph, E.K., (1973). Discussion of radiocarbon dates obtained from precisely dated sequoia and bristlecone pine samples.
Proceedings of the Eighth International Radiocarbon Dating Conference
Vol. 1, The Royal Society of New Zealand, Wellington
A12
A27.Google Scholar
Mosby, H., (1960). Surrounding Seas.
Sömme, A., A Geography of Norden
J. W. Cappelens Forlag, Oslo
18
26.Google Scholar
Mosby, H., (1963). Water, salt and heat balance in the North Polar Sea.
Proceedings Arctic Basin Symp Oct. 1962Arctic Inst. North Am
69
84.Google Scholar
Nydal, R., Gulliksen, S., Lövseth, K., (1972). Trondheim natural radiocarbon measurements VI.
Radiocarbon
14, 418
451.CrossRefGoogle Scholar
Olausson, E., Jonasson, U.C., (1969). The Arctic Ocean during the Würm and Early Flandrian.
Geologiska Föreningens i Stockholm Förhandlingar
91, 185
200.CrossRefGoogle Scholar
Olsson, I., (1960). Uppsala Natural radiocarbon measurements II.
American Journal of Science. Radiocarbon Supplement
2, 112
118.Google Scholar
Olsson, I.U., (1970). Radiocarbon variations and absolute chronology.
Almqvist and Wicksell, Stockholm
653.Google Scholar
Olsson, I.U., El-Gammal, S., Göksu, Y., (1969). Uppsala natural radiocarbon measurements IX.
Radiocarbon
11, 515
544.CrossRefGoogle Scholar
Olsson, I.U., Göksu, Y., Stenberg, A., (1968). Further investigations of storing and treatment of foraminifera and molluscs for C14-dating.
Geologiska Föreningens i Stockholm Förhandlingar
90, 417
426.Google Scholar
Ostenso, N.A., (1966). Arctic Ocean.
Fairbridge, R.W., The Encyclopedia of Oceanography
Reinhold Publ. Corp, New York
49
55.Google Scholar
Rafter, T.A., Jansen, H.S., Lockerbie, L., Trotter, M.M., (1973). New Zealand radiocarbon reference standards.
Proceedings of the Eighth International Radiocarbon Dating Conference
Vol. 2, The Royal Society of New Zealand, Wellington
H29
H79.Google Scholar
Ruddiman, W.F., McIntyre, A., (1973). Time-transgressive deglacial retreat of Polar Waters from the North Atlantic.
Quaternary Research
3, 117
130.CrossRefGoogle Scholar
Sætre, R., (1973). Temperatur- og saltholdighetsnormaler for overflatelaget i norske kystfarvann. Temperature and salinity normals for the surface layer in Norwegian coastal watersFiskets Gang
59, 166
172Bergen.Google Scholar
Yang, A.I.C., Fairhall, A.W., (1973). Variations of natural radiocarbon during the last 11 millenia and geophysical mechanisms for producing them.
Proceedings of the Eighth International Radiocarbon Dating Conference
Vol. 1, The Royal Society of New Zealand, Willington
A44
A57.Google Scholar
- 366
- Cited by