Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:48:04.288Z Has data issue: false hasContentIssue false

An amalgamated meter-thick sedimentary package enabled by the 2011 Tohoku tsunami in El Garrapatero, Galapagos Islands

Published online by Cambridge University Press:  20 January 2017

Maria Elizabeth Martin Arcos*
Affiliation:
AMEC, 2101 Webster Street, Oakland, CA 94612, USA
BreanynTiel MacInnes
Affiliation:
Dept. of Geological Sciences, Central Washington University, 400 E. University Way (7418), Ellensburg, WA 98926, USA
Patricia Arreaga
Affiliation:
InstitutoOceanogr"fico de la Armada de Ecuador, Av. 25 de Julio-km 3 1/2 v"aPto. Mar"timo Base Naval Sur, Guayaquil, Ecuador
Frances Rivera-Hernandez
Affiliation:
Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310, USA
Robert Weiss
Affiliation:
Department of Geosciences, Virginia Tech, 4044 Derring Hall (0420), Blacksburg, VA 24061, USA,
Patrick Lynett
Affiliation:
Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089-2531, USA
*
*Corresponding author. Fax: + 1 510 663 4141. E-mail address:[email protected] (M.E.M. Arcos).

Abstract

Tsunamis and storms instigate sedimentological and geomorphological changes to the coastal system, both long-term and ephemeral. To accurately predict future coastal hazards, one must identify the records that are generated by the processes associated with these hazards and recognize what will be preserved. Using eyewitness accounts, photographs, and sedimentology, this study documents pre- and post-tsunami conditions and constrains the timing and process of depositional events during and following the 11 March 2011 Tohoku tsunami in the coastal system at El Garrapatero, Galapagos Islands. While the tsunami acted as both an erosional and depositional agent, the thick, fan-like sand sheet in El Garrapatero was primarily emplaced by overwash deposition during high tide from swell waves occurring between 19–25 March and 17–22 April 2011. The swell waves were only able to access the terrestrial coastal system via a channel carved by the 2011 Tohoku tsunami through the barrier sand dune. This combined deposit could result in an overestimation of the hazard if interpreted to be the result of only one event (either tsunami or wind-generated waves). An analogous sand layer, younger than 1390–1530 calyr BP, may record a similar, prior event.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apotsos, A., Buckley, M., Gelfenbaum, G., Jaffe, B., Vatvani, D., (2011). Nearshore tsunami inundation model validation: toward sediment transport applications. Pure and Applied Geophysics 168, 20972119.CrossRefGoogle Scholar
Arcos, M.E.M., (2012). The AD 900–930 Seattle Fault Zone earthquake with a wider coseismic rupture patch and postseismic submergence: inferences from new sedimentary evidence. Bulletin of the Seismological Society of America 102, 10791098.CrossRefGoogle Scholar
Atwater, B.F., ten Brink, U.S., Buckley, M., Halley, R.S., Jaffe, B.E., Lopez-Venegas, A.M., Reinhardt, E.G., Tuttle, M.P., Watt, S., Wei, Y., (2012). Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands. Natural Hazards 63, 5184.Google Scholar
Bondevik, S., (2003). Storegga tsunami sand in peat below the Tapes beach ridge at Haroy, western Norway, and its possible relation to an early Stone Age settlement. Boreas 32, 476483.Google Scholar
Bondevik, S., Svendsen, J.I., Mangerud, J., (1997). Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal laeks, western Norway. Sedimentology 44, 11151131.CrossRefGoogle Scholar
Bourgeois, J., (2009). Geologic effects and records of tsunamis. Robinson, A., Bernard, E., The Sea (Tsunamis), vol. no. 15. Harvard University Press, Cambridge and London.5591.Google Scholar
Chadwick jr., W.W., De Roy, T., Carrasco, A., (1991). The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands. Bulletin of Volcanology 53, 276286.10.1007/BF00414524.CrossRefGoogle Scholar
Choowong, M., Murakoshi, N., Hisada, K., Charusiri, P., Daorerk, V., Charoentitirat, T., Chutakositkanon, V., Jankaew, K., Kanjanapayont, P., (2007). Erosion and deposition by the 2004 Indian Ocean Tsunami in Phuket and Phang-nga Provinces, Thailand. Journal of Coastal Research 23, 12701276.Google Scholar
Choowong, M., Phantuwongraj, S., Charoentitirat, T., Chutakositkanon, V., Yumuang, S., Charusiri, P., (2009). Beach recovery after 2004 Indian Ocean tsunami from Phang-nga, Thailand. Geomorphology 104, 134142.CrossRefGoogle Scholar
Cisternas, M., Atwater, B.F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., Youlton, C., Salgado, I., Kamataki, T., Shishikura, M., Rajendran, C.P., Malik, J.K., Rizal, Y., Husni, M., (2005). Prodecessors of the giant 1960 Chile earthquake. Nature 437, 404407.Google Scholar
Clague, J.J., Bobrowsky, P.T., Hutchinson, I., (2000). A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews 19, 849863.Google Scholar
Cochran, U.A., Berryman, K.R., Mildenhall, D.C., Hayward, B.W., Southall, K., Hollis, C.J., (2005). Towards a record of Holocene tsunami and storms for northern Hawke's Bay, New Zealand. New Zealand Journal of Geology and Geophysics 48, 507515.Google Scholar
Dawson, S., Smith, D.E., (2000). The sedimentology of mid-Holocene tsunami facies in northern Scotland. Marine Geology 170, 6979.Google Scholar
Di Geronimo, I., Choowong, M., Phantuwongraj, S., (2009). Geomorphology and superficial bottom sediments of Khao Lak coastal area (SW Thailand). Polish Journal of Environmental Studies 18, 111121.Google Scholar
Donnelly, J.P., Butler, J., Roll, S., Wengren, M., Webb, T., (2004). A backbarrier overwash record of intense storms from Brigantine, New Jersey. Marine Geology 210, 107121.Google Scholar
Espinoza, J., (1992). Terremotos tsunamigenicos en el Ecuador. INOCARActa Oceanographica del Pacifico 7, 2128.Google Scholar
Fujiwara, O., Masuda, F., Sakai, T., Irizuki, T., Fuse, K., (2000). Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. Sedimentary Geology 135, 219223.Google Scholar
Gelfenbaum, G., Jaffe, B., (2003). Erosion and sedimentation from the17 July, 1998 Papua New Guinea tsunami. Pure and Applied Geophysics 160, 19691999.Google Scholar
Glynn, P.W., Wellington, G.M., (1983). Corals and Coral Reefs of the Galapagos Islands. University of California Press, Berkeley, California.331 pp.Google Scholar
Goff, J., McFadgen, B.G., Chagué-Goff, C., (2004). Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology 204, 235250.Google Scholar
González, F.I., Geist, E.L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C.E., Titov, V.V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Paresons, T., Peters, R., Peterson, C., Preist, G., Venturato, A., Weber, J., Wong, F., Yalciner, A., (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research 14, 10.1029/2008JC005132.Google Scholar
Goto, K., Takahashi, J., Fujino, S., (2012). Variations in the 2004 Indian Ocean tsunami deposits thickness and their preservation potential, southwestern Thailand. Earth and Planetary Science 64, 923930.Google Scholar
Hayes, M.O., (1967). Hurricanes as geological agents, south Texas coast. American Association Petroleum Geology Bulletin 51, 937942.Google Scholar
Higman, B., Bourgeois, J., (2008). Deposits of the 1992 Nicaragua tsunami. Shiki, T., Tsuji, Y., Yamazaki, T., Minoura, K., Tsunamiites: Features and Implications. Elsevier, San Francisco.81104.Google Scholar
Jaffe, B.E., Gelfenbaum, G., (2007). A simple model for calculating tsunami flow speed from tsunami deposits. Sedimentary Geology 200, 347361.Google Scholar
Jaffe, B.E., Goto, K., Sugawara, D., Richmond, B.M., Fujino, S., Nishimura, Y., (2012). Flow speed estimated by inverse modeling of sandy tsunami deposits: results from the 11 March 2011 tsunami on the coastal plain near the Sendai Airport, Honshu, Japan. Sedimentary Geology 282, 90109.Google Scholar
Jankaew, K., Atwater, B.F., Sawai, Y., Choowong, M., Charoentitirat, T., Martin, M.E., Prendergast, A., (2008). Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 12281231.CrossRefGoogle Scholar
Keating, B.H., McGuire, W.J., (2000). Island edifice failures and associated tsunami hazards. Pure and Applied Geophysics 157, 899955.CrossRefGoogle Scholar
Kelsey, H.M., Nelson, A.R., Hemphill-Haley, E., Witter, R., (2005). Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geological Society of America Bulletin 117, 10091032.Google Scholar
Kitamura, N., Kotaka, T., Kataoka, J., (1961). Ofunato-Shizugawa chiku (region between Ofunato and Shizugawa). Kon'no, E. Geological observations of the Sanriku coastal region damaged by tsunami due to the Chile earthquake in 1960. 52, Contributions of Institute of Geology and Paleontology, Tohoku University.2840.Google Scholar
Kumar, N., Sanders, J.E., (1976). Characteristics of shoreface storm deposits: modern and ancient examples. Journal of Sedimentary Petrology 46, 145162.Google Scholar
Leatherman, S.P., (1981). Overwash Processes. Hutchinson Ross Publishing Company. Stroudsburg, Pa. Benchmark Papers in Geology 58, .Google Scholar
Liew, S.C., Gupta, A., Wong, P.P., Kwoh, L.K., (2010). Recovery from a large tsunami mapped over time: the Aceh coast, Sumatra. Geomorphology 114, 520529.CrossRefGoogle Scholar
Lui, K.-b., Fearn, M.L., (1993). Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology 21, 793796.Google Scholar
Lynett, P., Weiss, R., Renteria, W., De La Torre Morales, G., Son, S., Arcos, M.E.M., MacInnes, B.T., (2012). Coastal impacts of the March 11th Tsunami in the Galapagos Islands. Pure and Applied Geophysics10.1007/s00024-012-0568-3.Google Scholar
MacInnes, B.T., Pinegina, T.K., Bourgeois, J., Razhegaeva, N.G., Kaistrenko, V.M., Kravchunovskaya, E.A., (2009a). Field survey and geological effects of the 15 November 2006 Kuril tsunami in the middle Kuril Islands. Pure and Applied Geophysics 166, .Google Scholar
MacInnes, B.T., Bourgeois, J., Pinegina, T.K., Kravchunovskaya, E., (2009b). Tsunami geomorphology: erosion and deposition from the 15 November 2006 Kuril Island tsunami. Geology 37, 995998.CrossRefGoogle Scholar
Martin, M.E., Bourgeois, J., (2012). Vented sediments and tsunami deposits in the Puget Lowland, Washington – differentiating sedimentary processes. Sedimentology 59, 419444.Google Scholar
Monecke, K., Finger, W., Klarer, D., Kongko, W., McAdoo, B.G., Moore, A.L., Sudrajat, , (2008). A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455, 12321234.Google Scholar
Moore, A.L., MacAdoo, B.G., Ruffman, A., (2007). Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology 200, 336346.Google Scholar
Morales, J.A., Borrego, J. San, Miguel, E.G., Lopez-Gonzalez, N., Carro, B., (2008). Sedimentary record of recent tsunamis in the Huelva Estuary (southwestern Spain). Quaternary Science Reviews 27, 734746.Google Scholar
Morton, R.A., Paine, J.G., Gibeaut, J.C., (1994). Stages and durations of post-storm beach recovery, southeastern Texas coast, U.S.A.. Journal of Coastal Research 10, 884908.Google Scholar
Morton, R.A., Gelfenbaum, G., Jaffe, B.E., (2007). Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology 200, 184207.Google Scholar
Morton, R.A., Gelfenbaum, G., Buckley, M.L., Richmond, B.M., (2011). Geological effects and implications of the 2010 tsunami along the central coast of Chile. Sedimentary Geology 242, 3451.Google Scholar
Nanayama, F., Shigeno, K., Satake, K., Shimokawa, K., Koitabashi, S., Miyasaka, S., Ishii, M., (2000). Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology 135, 255264.Google Scholar
Nanayama, F., Furukawa, R., Shigeno, K., Makino, A., Soeda, Y., Igarashi, Y., (2007). Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sedimentary Geology 200, 275294.Google Scholar
NEIC, , database of earthquakes. http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.Google Scholar
Nichol, S.L., Kench, P.S., (2008). Sedimentology and preservation potential of carbonate sand sheets deposited by the December 2004 Indian Ocean tsunami: South Baa Atoll, Maldives. Sedimentology 55, 11731187.Google Scholar
Nott, J., (2004). Palaeotempestology: the study of prehistoric tropical cyclones—a review and implications for hazard assessment. Environment International 30, 433447.Google Scholar
Paris, R., Wassmer, P., Sartohadi, J., Lavigne, F., Barthomeuf, B., Desgages, E., Grancher, D., Baumert, P., Vautier, F., Brunstein, D., Gomez, C., (2009). Tsunamis as geomorphic crises: lessons from the December 26, 2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Geomorphology 104, 5972.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). INTCAL 09 and MARINE09 Radiocarbon age calibration curves, 0–50,000 years Cal BP. Radiocarbon 51, 11111150.Google Scholar
Reinhart, M.A., (1991). Sedimentology of tsunami deposits. Master of Science Thesis, University of Washington, SW Washington.83.Google Scholar
Sawai, Y., (2002). Evidence for 17th-century tsunamis generated on the Kuril–Kamchatka subduction zone, Lake Tokotan, Hokkaido, Japan. Journal of Asian Earth Science 20, 903911.Google Scholar
Schwartz, R.K., (1975). Nature and Genesis of some storm washover deposits. Coastal Engineering Research Center Technical Memo 61, 169.Google Scholar
Simpson, R.H., Reihl, H., (1981). The hurricane and its impact. Louisiana State Press, Baton Rouge, LA.Google Scholar
Smith, D.E., Foster, I.D.L., Long, D., Shi, S., (2007). Reconstructing the pattern and depth of flow onshore in a paleo-tsunami from associated deposits. Sedimentary Geology 200, 362371.Google Scholar
Switzer, A.D., Jones, B.G., (2008). Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm?. The Holocene 18, 787803.Google Scholar
Szczuciński, W., (2011). The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Natural Hazards10.1007/s11069-011-9956-8.Google Scholar
Umitsu, M., Tanavud, C., Patanakanog, B., (2007). Effects of landforms on tsunami flow in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand. Marine Geology 242, 141153.Google Scholar
White, S.M., Trenkamp, R., Kellogg, J.N., (2003). Recent crustal deformation and the earthquake cycle along the Ecuador–Colombia subduction zone. Earth and Planetary Science Letters 6853, 112.Google Scholar
Witter, R.C., Kelsey, H.M., Hemphill-Haley, E., (2001). Pacific storms, El Niño and tsunami: competing mechanisms for sand deposition in a coastal meadow, Euchre Creek, Oregon. Journal of Coastal Research 17, 563583.Google Scholar
Woodruff, J.D., Donnelly, J.P., Mohrig, D., Geyer, W.R., (2008). Reconstructing relative flooding intensities responsible for hurricane——induced deposits from Laguna Playa Grande, Vieques, Puerto Rico. Geology 36, 391394.Google Scholar
Yulianto, E., Prendergast, A.L., Jankaew, K., Eipert, A.A., Atwater, B.F., Cisternas, M., Warnakulasuriya, I.S.F., Tejakusuma, I., Schiappacesse, L.I., (2007). Tsunami scour-fan deposits in south-central Chile. XVII INQUA Congress, Cairns, Australia.Google Scholar