Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T07:03:37.121Z Has data issue: false hasContentIssue false

An 8000-year record of vegetation, climate, and human disturbance from the Sierra de Apaneca, El Salvador

Published online by Cambridge University Press:  20 January 2017

Robert A. Dull*
Affiliation:
Department of Geography, Texas A&M University, 810 Eller O&M Building, College Station, TX 77843-3147, USA
*
*Fax: (979) 862-4487.E-mail address:[email protected].

Abstract

An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000–5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200–250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P. culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P. and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaroli, P., Dull, R., (1999). Milpas prehispánicas en El Salvador. Proceedings of the XII Simposio de Investigaciones Arqueológicas en Guatemala, 1998. 639650.Google Scholar
Bauer, R.E., Edlund, E., Orvis, K., (1991). CALPALYN 2.0. Department of Geography Palynology Laboratory, University of California, Berkeley.Google Scholar
Benz, B.F., (2001). Archaeological evidence of teosinte domestication from Guila Naquitz, Oaxaca. Proceedings of the National Academy of Sciences of the United States of America. 98, 21042106.CrossRefGoogle ScholarPubMed
Brenner, M., Curtis, J.H., Higuera-Gundy, A., Hodell, D.A., Jones, G.A., Binford, M.W., Dorsey, K.T., (1994). Lake Miragoane, Haiti (Caribbean). Gierlowski-Kordesch, E., Kelts, K., Global Geological Record of Lake Basins. vol. 1, Cambridge University Press, Cambridge, UK., 401403.Google Scholar
Bush, M.B., (2000). Deriving response matrices from Central American modern pollen rain. Quaternary Research. 54, 132143.CrossRefGoogle Scholar
Bush, M.B., (2002). Distributional change and conservation on the Andean flank: a palaeoecological perspective. Global Ecology and Biogeography. 11, 463473.Google Scholar
Bush, M.B., Piperno, D.R., Colinvaux, P.A., De Oliveira, P.E., Krissek, L.A., Miller, M.E., Rowe, W.E., (1992). A 14300-yr paleoecological profile of a lowland tropical lake in Panama. Ecological Monographs. 62, 251275.Google Scholar
Bush, M.B., Stute, M., Ledru, M.-P., Behling, H., Colinvaux, P.A., De Oliveira, P.E., Grimm, E.C., Hooghiemstra, H., Haberle, S., Leyden, B.W., Salgado-Labouriau, M.-L., Webb, R., (2001). Paleotemperature estimates for the lowland Americas between 30°S and 30°N at the Last Glacial Maximum. Markgraf, V., Interhemispheric Climate Linkages. Academic Press, San Diego., 293306.Google Scholar
Clement, A.C., Seager, R., Cane, M.A., (2000). Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Paleoceanography. 15, 731737.Google Scholar
Demarest, A.A., (1986). The Archaeology of Santa Leticia and the Rise of Maya Civilization. Tulane University Middle America Research Institute, New Orleans.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Sarnthein, M., (2000). Coherent high- and low-latitude climate variability during the Holocene warm period. Science. 288, 21982202.Google Scholar
deMenocal, P.B., (2001). Cultural responses to climate change during the late Holocene. Science. 292, 667673.CrossRefGoogle ScholarPubMed
Doebley, J.F., Iltis, H.H., (1980). Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. American Journal of Botany. 67, 982993.Google Scholar
Dull, R.A., (2001). El Bosque Perdido: A Cultural–Ecological History of Holocene Environmental Change in Western El Salvador. Ph.D. thesis, University of California, Berkeley.Google Scholar
Dull, R.A., Southon, J.R., Sheets, P., (2001). Volcanism, ecology and culture: a reassessment of the Volcán Ilopango TBJ eruption in the southern Maya realm. Latin American Antiquity. 12, 2544.CrossRefGoogle Scholar
Faegri, K., Iverson, J., (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Fowells, H.A., (1965). Silvics of Forest Trees of the United States. USDA Forest Service, Washington, DC.Google Scholar
Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., Head, M.J., (1998). Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science. 279, 10141018.CrossRefGoogle ScholarPubMed
Goman, M., Byrne, R., (1998). A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene. 8, 8389.CrossRefGoogle Scholar
Harger, J.R.E., (1995). Air-temperature variations and ENSO effects in Indonesia, the Philippines and El Salvador: ENSO patterns and changes from 1866–1993. Atmospheric Environment. 29, 19191942.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science. 293, 13041308.Google Scholar
Heiri, O., Lotter, A., Lemcke, G., (2001). Loss of ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology. 25, 101110.Google Scholar
Hodell, D.A., Curtis, J.H., Jones, G.A., Heguera-Gundy, A., Brenner, M., Binford, M.W., Dorsey, K.T., (1991). Reconstruction of Caribbean climate over the past 10,500 years. Nature. 352, 790793.CrossRefGoogle Scholar
Horn, S.P., (1993). Postglacial vegetation and fire history in the Chirripó Páramo of Costa Rica. Quaternary Research. 40, 107116.Google Scholar
Islebe, G.A., Hooghiemstra, H., (1997). Vegetation and climate history of montane Costa Rica since the last glacial. Quaternary Science Reviews. 16, 589604.Google Scholar
Islebe, G.A., Hooghiemstra, H., Brenner, M., Curtis, J.H., (1996). A Holocene vegetation history from lowland Guatemala. The Holocene. 6, 265271.CrossRefGoogle Scholar
Lardé y Larin, J., (1957). El Salvador: Historia de Sus Pueblos, Villas y Ciudades. Departamiento Editorial del Ministerio de Cultura, San Salvador.Google Scholar
Lauer, W., (1954). Las formas de la vegetacion de El Salvador. Comunicaciones del Instituto Tropical de Investigaciones Cientı̀ficas de la Universidad de El Salvador. 3, 4145.Google Scholar
Lawton, R.O., Nair, U.S., Pielke, S.R.A., Welch, R.M., (2001). Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science. 294, 584587.Google Scholar
Mayle, F.E., Burbridge, R., Killeen, T.J., (2000). Millennial-scale dynamics of southern Amazonian rain forests. Science. 290, 22912294.Google Scholar
Overpeck, J., Webb, R., (2000). Nonglacial rapid climate events: past and future. Proceedings of the National Academy of Sciences of the United States of America. 97, 13351338.CrossRefGoogle ScholarPubMed
Partida, E.G., Rodrı́guez, V.T., Birkle, P., (1997). Plio-Pleistocene volcanic history of the Ahuachapán geothermal system, El Salvador: the Concepción de Ataco caldera. Geothermics. 26, 555575.Google Scholar
Piperno, D.R., Flannery, K.V., (2001). The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences of the United States of America. 98, 21012103.CrossRefGoogle ScholarPubMed
Pohl, M.D., Pope, K.O., Jones, J.G., Jacob, J.S., Piperno, D.R., deFrance, S.D., Lentz, D.L., Gifford, J.A., Danforth, M.E., Josserand, J.K., (1996). Early agriculture in the Maya lowlands. Latin American Antiquity. 7, 355372.CrossRefGoogle Scholar
Pope, K.O., Pohl, M.E.D., Jones, J.G., Lentz, D.L., von Nagy, C., Vega, F.J., Quitmyer, I.R., (2001). Origin and environmental setting of ancient agriculture in the lowlands of Mesoamerica. Science. 292, 13701373.Google Scholar
Raynor, G.S., Ogden, E.C., Hayes, J.V., (1972). Dispersion and deposition of corn pollen from experimental sources. Agronomy Journal. 64, 420427.CrossRefGoogle Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An ∼15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science. 283, 516520.CrossRefGoogle ScholarPubMed
Roubik, D.W., Moreno, P.J.E., (1991). Pollen and Spores of Barro Colorado Island. Missouri Botanical Garden, St. Louis.Google Scholar
Sandweiss, D.H., Maasch, K.A., Anderson, D.G., (1999). Climate and culture: transitions in the mid-Holocene. Science. 283, 499500.Google Scholar
Sandweiss, D.H., Richardson, J.B. III,Reitz, E.J., Rollins, H., Maasch, K.A., (1996). Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Niño. Science. 273, 15311533.Google Scholar
Sluyter, A., (1997). Analysis of maize (Zea mays subsp. mays) pollen: normalizing the effects of microscope-slide mounting media on diameter determinations. Palynology. 21, 3539.Google Scholar
Steig, E.J., (1999). Mid-Holocene climate change. Science. 286, 14851487.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon. 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Plicht, J.v.d., Spurk, M., (1998). INTCAL98 radiocarbon age calibration 24,000–0 cal BP. Radiocarbon. 40, 10411083.Google Scholar
Thompson, L.G., (2000). Ice core evidence for climate change in the tropics: implications for our future. Quaternary Science Reviews. 19, 1935.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., Liu, K.-b., (1995). Late Glacial Stage and Holocene tropical ice core records from Huascarán, Peru. Science. 269, 4650.CrossRefGoogle ScholarPubMed
Tsukada, M., (1964). Pollen morphology and identification. III. Modern and fossil tropical pollen with emphasis on Bombacaceae. Pollen et Spores. 6, 393462.Google Scholar
Tsukada, M., Deevey, J.E.S., (1967). Pollen analysis from four lakes in the southern Maya area of Guatemala and El Salvador. Cushing, E.J., Wright, H.E., Quaternary Paleoecology. Yale University Press, New Haven., 303332.Google Scholar
Tsukada, M., Rowley, J.R., (1964). Identification of modern and fossil maize pollen. Grana Palynologica. 5, 406412.Google Scholar
Weber, H.S., Wiesmann, G.W., Lorenz, W., Thomé, S., (1978). Mapa Geológica de la Republica de El Salvador. San Salvador.Google Scholar
Whelan, R.J., (1995). The Ecology of Fire. Cambridge University Press, Cambridge, UK.Google Scholar
Whitehead, D.R., Langham, E.J., (1965). Measurement as a means of identifying fossil maize pollen. Bulletin of the Torrey Botanical Club. 92, 720.Google Scholar
Williams, H., Meyer-Abich, H., (1955). Volcanism in the southern part of El Salvador. University of California Publications in Geological Sciences. 32, 164.Google Scholar