Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T05:19:22.930Z Has data issue: false hasContentIssue false

Amazonian Paleodunes Provide Evidence for Drier Climate Phases during the Late Pleistocene–Holocene

Published online by Cambridge University Press:  20 January 2017

Arnaldo Carneiro Filho*
Affiliation:
INPA-CPEC, Instituto Nacional de Pesquisas da Amazonia, Coordenação de Ecologia, Laboratório de Paleoecologia e Ecologia da Paisagem, cx. postal 478, Manaus, AM, 69011-830, Brazil
Dominique Schwartz
Affiliation:
Université Louis Pasteur, Faculté de Géographie, 3, Rue de l'Argonne, Strasbourg, 67000, France
Sonia H. Tatumi
Affiliation:
Laboratório de Vidros e Datações, FATEC, Faculdade de Tecnologia, Universidade Estadual de São Paulo, São Paulo, SP, 01124-060, Brazil
Thierry Rosique
Affiliation:
Université Louis Pasteur, Faculté de Géographie, 3, Rue de l'Argonne, Strasbourg, 67000, France
*
1To whom correspondence should be addressed. E-mail: [email protected].

Abstract

Recent studies on relict eolian dunes in the Rio Negro basin, northern Amazon, Brazil (00°35′N, 63°14′W), indicate a drier climate regime during the Late Pleistocene–Holocene transition that is different from the present humid climate. The eolian sands form long chains of linear dunes bordering the Rio Negro River and some tributaries. Here, we present thermoluminescence (TL) ages spanning the period 32,000–8000 yr B.P. The final dune stabilization took place after 8,000 yr B.P. and now the bases of the dunes are fixed by vegetation. Clustering of the TL dates suggests that the dry climate in the Amazon Basin occurred in distinct episodes and argues against current opinions that drastic ecological changes did not affect in the Amazon during the last global glaciation.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab'Saber, A.N. Espaços ocupados pela expansao dos climas secos na América do Sul por ocasião dos periodos glaciais quaternarios. Paleoclimas 3, (1977). 1 19.Google Scholar
Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., Soubiés, F., Suguio, K., Turcq, B., and Van der Hammen, T. Mise en évidence de quatre phases d'ouverture de la foret dense dans le sud-est de l'Amazonie au cours des 60.000 derniéres années. Première comparaison avec d'autres régions tropicales. Compte Rendu Académie Sciences Paris 312, (1991). 673 678.Google Scholar
Behling, H., and Hooghiemstra, H. Neotropical Savanna Environments in Space and Time: Late Quaternary Interhemispheric Comparisons. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, New York. 307 323.Google Scholar
Bush, M.B., Miller, M.C., De Oliveira, P.E., and Colinvaux, P.A. Orbital-forcing signal in sediments of two Amazonian lakes. Journal of Paleolimnology 27, (2002). 341 352.CrossRefGoogle Scholar
Bush, M.B., Stute, M., Ledru, M.P., Behling, H., Colinvaux, P.A., Oliveira, P.E., Grimm, E.C., Hooghiemstra, H., Haberle, S., Leyden, B.W., Salgado-Laboriau, M., and Webb, R. Paleotemperature estimates for the lowland Americas between 30°S and 30°N at the Last Glacial Maximum. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, New York. 293 306.Google Scholar
Carneiro Filho, A., and Zinck, J.A. Mapping paleo-aeolian sand cover formations in the northern Amazon basin from TM images. ITC Journal 3, (1994). 270 282.Google Scholar
Colinvaux, P.A. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19, (2000). 141 169.CrossRefGoogle Scholar
Colinvaux, P.A., and De Oliveira, P.A. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 166, (2001). 51 63.CrossRefGoogle Scholar
Ganopolski, A., Rahmostorf, S., Petoukhov, V., and Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, (1998). 351 356.CrossRefGoogle Scholar
Goudie, A.S., Collins, A., Stokes, S., Parker, A., White, K., and Al-Farraj, A. Latest Pleistocene and Holocene dune construction at the north-eastern edge of the Rub Al Khali, United Arab Emirates. Sedimentology 47, (2000). 1011 1021.CrossRefGoogle Scholar
Haberle, S.G., and Maslin, M.A. Late Quaternary vegetation and climatic change in the Amazon basin based in a 50,000 year pollen record from the Amazon fan, PDP site 932. Quaternary Research 51, (1999). 27 38.CrossRefGoogle Scholar
Hooghiemstra, H., and Van der Hammen, T. Neogene Quaternary development of the neotropical rain forest: The forest refugia hypothesis, and a literature overview. Earth Sciences Reviews 44, (1998). 147 183.CrossRefGoogle Scholar
Hostetler, S.W., and Mix, A.C. Reassessment of ice-age cooling of the tropical ocean and atmosphere. Nature 399, (1999). 673 676.CrossRefGoogle Scholar
Hughen, K.A., Overpeck, J.T., Peterson, L.C., and Trumbore, S. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, (1996). 51 54.CrossRefGoogle Scholar
Latrubesse, E., and Nelson, B.W. Evidence for Late-Quaternary aeolian activity in the Roraima—Guyana Region. Catena 43, (2001). 63 80.CrossRefGoogle Scholar
Latrubesse, E.M., and Ramonell, C.G. A climatic model for southwestern Amazonia in Last Glacial times. Quaternary International 21, (1994). 163 169.CrossRefGoogle Scholar
Ledru, M.-P., Bertaux, J., Sifeddine, A., and Suguio, K. Absence of Last Glacial Maximum records in lowland tropical forests. Quaternary Research 49, (1998). 233 237.CrossRefGoogle Scholar
Lees, B.G., Yanchou, L., and Head, J. Reconnaissance thermoluminescence dating on northern Australian coastal dune systems. Quaternary Research 34, (1990). 169 185.CrossRefGoogle Scholar
Maslin, M.A., and Burns, S.J. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290, (2000). 2285 2287.CrossRefGoogle ScholarPubMed
Santos, J.O.S., Nelson, B.W., and Giovaninni, C.A. Dunas gigantes e campos de areia. Ciência Hoje (Paleoclimas da Amazônia). (1993). p. 2225.Google Scholar
Servant, M., Fontes, J.C., Rieu, M., and Saliège, J.F. Phases climatiques arides holocènes dans le sud-ouest de l'Amazonie (Bolivie). Compte Rendu Académie Sciences Paris 292, (1981). 1295 1297.Google Scholar
Stokes, S. Luminescence dating applications in geomorphological research. Geomorphology 29, (1999). 153 171.CrossRefGoogle Scholar
Stokes, S., Thomas, D.S.G., and Washington, R. Multiple episodes of aridity in southern Africa since the last interglacial period. Nature 388, (1997). 154 158.CrossRefGoogle Scholar
Tricart, J. Existence de périodes sèches au quaternaire en Amazonie et dans les régions voisines. Revue de Géomorphologie Dynamique 4, (1974). 145 158.Google Scholar
Van der Hammen, T., and Absy, M.L. Amazônia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 109, (1994). 247 261.CrossRefGoogle Scholar