Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T05:02:53.974Z Has data issue: false hasContentIssue false

Alpine Evidence for Atmospheric Circulation Patterns in Europe during the Last Glacial Maximum

Published online by Cambridge University Press:  20 January 2017

Duri Florineth
Affiliation:
Institute of Geology, University of Bern, Baltzerstrasse 1, CH-3012, Bern, Switzerland
Christian Schlüchter
Affiliation:
Institute of Geology, University of Bern, Baltzerstrasse 1, CH-3012, Bern, Switzerland

Abstract

The configuration of Alpine accumulation areas during the last glacial maximum (LGM) has been reconstructed using glacial–geological mapping. The results indicate that the LGM ice surface consisted of at least three major ice domes, all located south of the principal weather divide of the Alps. This implies that the buildup of the main Alpine ice cover during oxygen isotope stage (OIS) 2 was related to precipitation by dominant southerly atmospheric circulation, in contrast to today's prevalent westerly airflow. Such a reorganization of the atmospheric circulation is consistent with a southward displacement of the Oceanic Polar Front in the North Atlantic and of the associated storm track to the south of the Alps. These results, combined with additional paleoclimate records from western and southern Europe, allow an interpretation of the asynchronous evolution of the different European ice caps during the last glaciation. δ18O stages (OIS) 4 and 3 were characterized by location of the Polar Front north of 46°N (Gulf of Biscay). This affected prevailing westerly circulation and thus, ice buildup in western Scandinavia, the Pyrénées, Vosges, and northern Alps. At the LGM, however, the Polar Front lay at ∼44°N, causing dominating southerly circulation and reduced precipitation in central and northern Europe.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessio, M., Allegri, L., Bella, F., Belluomini, G., Calderoni, G., Cortesi, C., Improta, S., Manfra, L., Orombelli, G. (1979). I depositi lacustri di Rovegnate, di Pontida e di Pianico in Lombardia: Datazione con il 14C. Geografia Fisica e Dinamica Quaternaria, 1, 131137.Google Scholar
Andersen, B.G., Wangen, O.P., Ostmo, S.R. (1987). Quaternary geology of Jaeren and adjacent areas: Southwestern Norway. Norges Geologiske Undersokelse, Bulletin, 411, Google Scholar
Andrieu, V., Hubschman, J., Jalut, G., Herail, G.. Chronologie de la déglacation des Pyrénées françaises. Dynamique de sédimentation et contenu pollinique des paléolacs: Application à l'interprétation du retrait glaciaire. Bulletin de l'Association française pour l'Etude du Quaternaire, 34–35, (1988). 5567.Google Scholar
Benn, D.I. (1997). Glacier fluctuations in Western Scotland. Quaternary International, 38/39, 137147.Google Scholar
Berner, W., Oeschger, H., Stauffer, B. (1980). Information on CO2 cycle from ice core studies. Radiocarbon, 22, 227235.CrossRefGoogle Scholar
Bini, A. (1997). Statigraphy, chronology and paleogeography of Quaternary between Ticino and Olona rivers. Geologia Insubrica, 2, 2146.Google Scholar
Boyle, E.A., Keigwin, L. (1987). North Atlantic thermohaline circulation during the last 20,000 years: Link to high latitude surface temperature. Nature, 330, 3540.Google Scholar
Broccoli, A.J., Manabe, S. (1987). The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dynamics, 1, 8799.CrossRefGoogle Scholar
Broecker, W.. The strength of the nordic heat pump. Bard, E., Broecker, W. (1992). The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Ser., Ser I/2 Springer, Berlin, Heidelberg., 173182.Google Scholar
Broecker, W.S., Bond, G., Klas, M., Bonani, G., Wölfli, W. (1990). A salt oscillator in the Glacial Atlantic? The concept. Paleoceanography, 5, 469478.Google Scholar
Broecker, W.S., Denton, G.H. (1990). The role of ocean-atmosphere reorganizations in glacial cycles. Quaternary Science Reviews, 9, 305342.Google Scholar
Broecker, W.S., Peteet, D.M., Rind, D. (1985). Does the ocean–atmosphere have more than one stable mode of operation?. Nature, 315, 2126.CrossRefGoogle Scholar
Broecker, W.S., Rooth, C., Peng, T.H. (1985). Ventilation of the deep northeastern Atlantic. Journal of Geophysical Research, 90, 69406944.Google Scholar
Campy, M., Richard, H. (1988). Modalités et chronologie de la déglaciation würmienne dans la Cha $$ıne jurassienne. Bulletin de l'Association française pour l'Etude du Quaternaire, 34–35, 8190.Google Scholar
Chappell, J., Shackleton, N.J. (1986). Oxygen isotopes and sea level. Nature, 324, 137140.Google Scholar
CLIMAP, P.M. (1981). Seasonal reconstructions of the earth's surface at the last glacial maximum. Geological Society of America Map and Chart Series, MC 36, Google Scholar
Science, 241, (1988). 10431052.Google Scholar
de Beaulieu, J.-L., Montjuvent, G., Nicoud, G. (1991). Chronology of the Würmian glaciation in the French Alps: A survey and new hypotheses. Frenzel, B.. Klimageschichtliche Probleme der letzten 130,000 Jahre. Paläoklimaforschung, Gustav Fischer Verlag, Stuttgart., 435448.Google Scholar
de Beaulieu, J.-L., Reille, M. (1992). The last climatic cycle at la Grande Pile (Vosges, France): A new pollen profile. Quaternary Science Reviews, 11, 431438.Google Scholar
Draxler, I., van Husen, D. (1991). Ein 14C-datiertes Profil in der Niederterrasse bei Neurath (Stainz, Stmk.). Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 351361.Google Scholar
Dricot, E., Pétillon, M., Seret, G.. When and why did glaciers grow or melt in the Vosges Mountains (France)?. Frenzel, B. (1991). Klimageschichtliche Probleme der letzten 130,000 Jahre. Paläoklimaforschung, Gustav Fischer Verlag, Stuttgart., 363376.Google Scholar
Duplessy, J.-C., Shackleton, N.J., Fairbanks, R., Labeyrie, L., Oppo, D., Kallel, N. (1988). Deep water source variations during the last climatic cycle and their impact on the deep water circulation. Paleoceanography, 3, 343360.Google Scholar
Etlicher, B., de Goer de Hervé, A. (1988). La déglaciation würmienne dans le Massif Central français: Le point des travaux récents. Bulletin de l'Association française pour l'Etude du Quaternaire, 34–35, 103110.Google Scholar
Fliri, F. (1973). Beiträge zur Geschichte der alpinen Würmvereisung: Forschungen am Bänderton von Baumkirchen (Inntal, Tirol). Zeitschrift für Geomorphologie N.F., Supplement-Band, 16, 114.Google Scholar
Fliri, F. (1978). Die Stellung des Bändertonvorkommens von Schabs (Südtirol) in der Alpinen Würm-Chronologie. Zeitschrift für Gletscherkunde und Glazialgeologie, 14, 115118.Google Scholar
Fliri, F. (1984). Synoptische Klimatographie der Alpen zwischen Mont Blanc und Hohen Tauern (Schweiz-Tirol-Oberitalien). Wissenschaftliche Alpenvereinshefte, Heft 29, 686 Google Scholar
Fliri, F. (1989). Eine Bestimmung des Beginnes der Haupt-Würmvereisung im Zentralraum der Alpen (Albeins bei Brixen). Der Schlern, 6265.Google Scholar
Florineth, D. (1998). Surface geometry of the Last Glacial Maximum (LGM) in the southeastern Swiss Alps (Graubünden) and its paleoclimatological significance. Eiszeitalter und Gegenwart, 48, 2337.Google Scholar
Florineth, D., Schlüchter, C. (1998). Reconstructing Last Glacial Maximum (LGM) ice surface geometry and flowlines in the Central Swiss Alps. Eclogae geologicae Helvetiae, 91, 391407.Google Scholar
Frenzel, B.. Vegetation during the maximum cooling of the last glaciation. Frenzel, B., Pecsi, M., Velichko, A.A. (1992). Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. INQUA/Hungarian Academy of Sciences, Budapest.Google Scholar
Gillespie, A., Molnar, P. (1995). Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics, 33, 311364.Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.L., Reille, M. (1989). A 140,000 year continental climate reconstruction from two European pollen records. Nature, 338, 309314.CrossRefGoogle Scholar
Haeberli, W., Penz, U. (1985). An attempt to reconstruct glaciological and climatological characteristics of 18,000 BP ice conditions in and around the Swiss Alps. Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 351361.Google Scholar
Harrison, S.P., Prentice, I.C., Bartlein, P.J. (1992). Influence of insulation and glaciation on atmospheric circulation in the North Atlantic sector: Implications of general circulation model experiments for the Late Quaternary climatology of Europe. Quaternary Science Reviews, 11, 283299.CrossRefGoogle Scholar
Harrison, S.P., Yu, G., Tarasov, P.E. (1996). Late Quaternary lake-level record from northern Eurasia. Quaternary Research, 45, 138159.Google Scholar
Ivy-Ochs, S. (1996). The Dating of Rock Surfaces Using in Situ Produced 10Be, 26Al and 36Cl, with Examples from Antarctica and the Swiss Alps. ETH-Zürich, Google Scholar
Jäckli, H. (1962). Die Vergletscherung der Schweiz im Würmmaximum. Eclogae Geologicae Helvetiae, 55, 285294.Google Scholar
Jäckli, H. (1970). Die Schweiz zur letzten Eiszeit, Karte 1:550000. Atlas der Schweiz Bundesamt für Landestopographie, Wabern-Bern.Google Scholar
Jalut, G., Andrieu, V., Delibrias, G., Fontugne, M., Pagès, P. (1988). Palaeoenvironment of the valley of Ossau (western French Pyrénées) during the last 27000 years. Pollen et Spores, 30, 357394.Google Scholar
Jalut, G., Monserrat-Marti, J., Fontugne, M., Delibrias, G., Vilaplana, J.M., Julia, R. (1992). Glacial to interglacial vegetation changes in the northern and southern Pyrénées: Deglaciation, vegetation cover and chronology. Quaternary Science Reviews, 11, 449480.Google Scholar
Johnsen, S.J., Dahl-Jensen, D., Dansgaard, W., Gundestrup, N. (1995). Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, Series B., 47, 624629.CrossRefGoogle Scholar
Johnson, H., Richards, P.C., Long, D., Graham, C.C. (1993). The Geology of the Northern North Sea. HMSO, London.Google Scholar
Jouzel, J., Raisbeck, G., Benoist, J.P., Yiou, F., Lorius, C., Raynaud, D., Petit, J.R., Barkov, N.I., Korotkevich, Y.S. (1989). A comparison of deep Antarctic ice cores and their implications for climate between 65′000 and 15′000 years ago. Quaternary Research, 31, 135150.Google Scholar
Kellogg, T.B. (1980). Paleoclimatology and paleo-oceanography of the Norwegian and Greenland Seas: Glacial–interglacial contrasts. Boreas, 9, 537.CrossRefGoogle Scholar
Kleman, J., Hättestrand, C., Borgström, I., Stroven, A. (1997). Fennoscandian paleoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology, 43, 283299.CrossRefGoogle Scholar
Kutzbach, J.E., Gallimore, R.G., Guetter, P.J. (1991). Sensitivity experiments on the effect of orbitally-caused insolation changes on the interglacial climate of high northern latitudes. Quaternary International, 10, 223230.Google Scholar
Kutzbach, J.E., Guetter, P.J. (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulation for the past 18,000 years. Journal of Atmospheric Sciences, 43, 17261759.Google Scholar
Larsen, E., Sejrup, H.P. (1990). Weichselian land-sea interactions: Western Norway–Norwegian sea. Quaternary Science Reviews, 9, 8597.Google Scholar
Lehman, S.J., Keigwin, L.D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature, 356, 757762.Google Scholar
Long, D., Laban, C., Streif, H., Cameron, T.D.J., Schüttenhelm, R.T.E. (1988). The sedimentary record and climatic varation in the southern North Sea. Philosophical Transactions of the Royal Society of London, B318, 523537.Google Scholar
Lundqvist, J. (1986). Late Weichselian glaciation and deglaciation in Scandinavia. Quaternary Science Reviews, 5, 269292.CrossRefGoogle Scholar
Marks, L., Piotrowski, J.A., Stephan, H.-J., Fedorowicz, S., Butrym, J. (1995). First thermoluminescence indications of the Middle Weichselian (Vistulian) Glaciation in northwest Germany. Meyniana, 47, 6982.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C.J., Shackleton, N.J. (1987). Age dating and the orbital theory of ice ages: Development of a high-resolution 0–300,000-year chronostratigraphy. Quaternary Research, 27, 129.Google Scholar
Martyn, D. (1992). Climates of the World. Elsevier, Amsterdam.Google Scholar
Meyer, H.-H., Kottmeier, C. (1989). Die atmosphärische Zirkulation in Europa im Hochglazial der Weichsel-Eiszeit—abgeleitet von Paläowind-Indikatoren und Modellsimulationen. Eiszeitalter und Gegenwart, 39, 1018.Google Scholar
Orombelli, G. (1974). Alcune date 14C per il Quaternario lombardo. Studi Trentini di Scienze Naturali, 51, 125127.Google Scholar
Petit, J.R., Mounier, L., Jouzel, J., Korotkevich, Y.S., Kotlyakov, V.I., Lorius, C. (1990). Paleoclimatological and chronological implications of the Vostok core dust record. Nature, 343, 5658.CrossRefGoogle Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., Andrieu, V. (1998). Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research, 49, 183196.Google Scholar
Pons, A., Campy, M., Guiot, J. (1989). The last climatic cycle in France: The diversity of records. Quaternary International, 3/4, 4956.Google Scholar
Poser, H. (1948). Aeolische Ablagerungen und Klima des Spätglazials in Mittel-und Westeuropa. Die Naturwissenschaften, 35, 269276.Google Scholar
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., Solomon, A.M. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117134.Google Scholar
Prentice, I.C., Guiot, J., Harrison, S.P. (1992). Mediterranean vegetation, lake levels and paleoclimate at the Last Glacial Maximum. Nature, 360, 658660.Google Scholar
Revel, J.C., Bourgeat, F., Paquet, H. (1978). Pédogénèses quaternaires dans la région toulousaine. Les loess et leurs colluvions comme marqueur chronologique. Bulletin de l'Association française pour l'Etude du Quaternaire, 57, 179185.CrossRefGoogle Scholar
Rind, D., Peteet, D., Broecker, W., McIntyre, A., Ruddiman, W. (1986). The impact of cold North Atlantic sea surface temperatures on climate: Implications for the Younger Dryas cooling (11–10 k). Climate Dynamics, 1, 333.Google Scholar
Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography, 7, 131149.Google Scholar
Ruddiman, W.F., McIntyre, A. (1981). The North Atlantic Ocean during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 145215.CrossRefGoogle Scholar
Ruddiman, W.F., McIntyre, A., Niebler-Hunt, V., Durazzi, J.T. (1980). Oceanic evidence for the mechanism of rapid Northern Hemisphere glaciation. Quaternary Research, 13, 3364.Google Scholar
Ruddiman, W.F., Sancetta, C.D., McIntyre, A. (1977). Glacial/interglacial response rate of subpolar North Atlantic water to climatic change: The record left in deep-sea sediments. Philosophical Transactions of the Royal Society of London B, 280, 119142.Google Scholar
Schlüchter, C.. Fazies und Chronologie des letzteiszeitlichen Eisaufbaus im Alpenvorland der Schweiz. Frenzel, B. (1991). Klimageschichtliche Probleme der letzten 130,000 Jahre. Paläoklimaforschung, Gustav Fischer Verlag, Stuttgart., 401408.Google Scholar
Schlüchter, C., Maisch, M., Suter, J., Fitze, P., Keller, W.A., Burga, C.A., Wynistorf, E. (1987). Das Schieferkohlenprofil von Gossau (Kt. Zürich) und seine stratigraphische Stellung innerhalb der letzten Eiszeit. Vierteljahresschrift der naturforschenden Gesellschaft Zürich, 132/3, 135174.Google Scholar
Schlüchter, C., Müller-Dick, K. (1995). Das Eiszeitalter in der Schweiz. Geological Institute, University of Bern, Germany (Stiftung für Landschaft und Kies, Ostermundigen).Google Scholar
Schlüchter, C., Röthlisberger, C. (1995). 100,000 Jahre Gletschergeschichte. Publikation der Schweizerischen Akademie der Naturwissenschaften, 4763.Google Scholar
Sejrup, H.P., Aarseth, I., Ellingsen, K.L., Reither, E., Jansen, E., Løvlie, R., Bent, A., Brigham-Grette, J., Larsen, E., Stocker, M. (1987). Quaternary stratigraphy of the Fladen area, central North Sea: A multidisciplinary study. Journal of Quaternary Science, 2, 3548.CrossRefGoogle Scholar
Seret, G. (1967). Les systèmes glaciaires du bassin de la Moselle et leurs enseignements. Société Royale Belge de Geographie, 90, 157177.Google Scholar
Seret, G., Dricot, E., Wansard, G. (1990). Evidence for an early glacial maximum in the French Vosges during the last glacial cycle. Nature, 346, 453456.CrossRefGoogle Scholar
Seret, G., Guiot, J., Wansard, G., de Beaulieu, J.-L., Reille, M. (1992). Tentative paleoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges, France). Quaternary Science Reviews, 11, 425430.Google Scholar
Shackleton, N.J. (1987). Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews, 6, 183190.CrossRefGoogle Scholar
Stauffer, B., Lochbronner, E., Oeschger, H., Schwander, J. (1989). Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene value. Nature, 338, 9497.Google Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.Google Scholar
Traub, F., Jerz, H. (1975). Ein Lössprofil von Duttendorf (Oberösterreich) gegenüber Burghausen an der Salzach. Zeitschrift für Gletscherkunde und Glazialgeologie, 11, 175193.Google Scholar
van Andel, T.H., Tzedakis, P.C. (1996). Palaeolithic landscapes of Europe and environs: 150,000–25,000 years ago: An overview. Quaternary Science Reviews, 15, 481500.Google Scholar
van Husen, D. (1987). Die Ostalpen in den Eiszeiten. Geologische Bundesanstalt Österreichs, Wien.Google Scholar
Vorren, T.O., Vorren, K.D., Torbjorn, A., Gulliksen, S., Lovlie, R. (1988). The last deglaciation (20,000 to 11,000) on Andoya, northern Norway. Boreas, 7, 4177.CrossRefGoogle Scholar
Washburn, A.L. (1979). Geocryology: A Survey of Periglacial Processes and Environments. Edward Arnold Ltd, London.Google Scholar
Weinelt, M., Sarnthein, M., Pflaumann, U., Schulz, H., Jung, S., Erlenkeuser, H. (1996). Ice-free Nordic Seas during the Last Glacial Maximum? Potential sites of deepwater formation. Paleoclimates, 1, 282309.Google Scholar
Woillard, G. (1978). Grande Pile bog: A continuous pollen record for the last 140,000 years. Quaternary Research, 9, 121.Google Scholar
Woillard, G., Mook, W.G. (1982). Carbon dates at Grande Pile: Correlation of land and sea chronologies. Science, 251, 159161.Google Scholar