Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T21:34:00.492Z Has data issue: false hasContentIssue false

Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska

Published online by Cambridge University Press:  20 January 2017

Darrell S. Kaufman
Affiliation:
Department of Geology, Utah State University, Logan, Utah, 84322-4505
Steven L. Forman
Affiliation:
Byrd Polar Research Center, Department of Geological Sciences, Ohio State University, Columbus, Ohio, 43210-1002
Peter D. Lea
Affiliation:
Department of Geology, Bowdoin College, Brunswick, Maine, 04011
Cameron W. Wobus
Affiliation:
Department of Geology, Bowdoin College, Brunswick, Maine, 04011

Abstract

Pleistocene glacial-estuarine sediment deposited in an intertidal environment of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared stimulated and thermoluminescence (IRSL and TL) techniques. Analysis of modern and 14C-dated Holocene tide-flat mud demonstrates that the bulk of sediment in this environment is reset by solar radiation, thereby lending confidence to ages obtained from similar Pleistocene deposits by luminescence techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of <10,000 yr. The ages of tide-flat mud of the Nushagak Formation, derived from the Ahklun Mountains to the northwest of Bristol Bay, and of Halfmoon Bay drift, derived from the Alaska Peninsula to the southeast, suggest contemporaneous glacial-estuarine deposition related to independent glacial source areas about 75,000–80,000 yr ago. This age is consistent with other geochronological data that indicate a pre-late-Wisconsin and post-substage-5e age, including nonfinite 14C ages, a lack of interglacial indicators, and Old Crow tephra (∼140,000 yr) atop the drift, normal paleomagnetic inclinations, and amino acid (isoleucine) epimerization ratios (aIle/Ile). AIle/Ile ratios in Portlandia arctica(0.052 ± 0.003) from a marine-lag horizon at South Naknek beach, which separates Halfmoon Bay drift above from older glacial-estuarine drift below, are only slightly higher than in Mya truncata(0.041 ± 0.007) from last-interglacial Pelukian deposits at Nome. As laboratory heating experiments show that the two genera epimerize at similar rates, these data imply correlation of the marine lag at South Naknek beach with Pelukian deposits. Hence, glaciers on the Alaska Peninsula experienced major pre-late-Wisconsin advances both before and after the last interglaciation. Shells reworked into Halfmoon Bay drift yield aIle/Ile ratios of 0.028 ± 0.005 for Portlandiaat Second Point and 0.027 ± 0.001 for Hiatella arcticaat Etolin Point. Together with assumptions about the postdepositional temperature history, these ratios indicate that the shells are at least 55,000 yr, and probably closer to ∼90,000 yr, although the uncertainty in this age estimate is broad. The amino acid and luminescence data converge on an age between about 75,000, and 90,000 yr, late during oxygen-isotope stage 5, for a major ice advance far beyond late-Wisconsin limits.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M. J., and Bowman, S. G. E. (1975). Thermoluminescent dating: Assessment of alpha particle contribution. Archaeometry 17 , 132138.Google Scholar
Aitken, M. J., and Xie, J. (1992). Optical dating using infrared diodes: Young samples. Quaternary Science Reviews 11 , 147152.Google Scholar
Balescu, S., and Lamothe, M. (1992). The blue emissions of K-feldspar coarse grains and its potential for overcoming TL age underestimates. Quaternary Science Reviews 11 , 4551.Google Scholar
Berger, G. W. (1984). Thermoluminescence dating studies of glacial silts from Ontario. Canadian Journal of Earth Sciences 21 , 13931399.Google Scholar
Berger, G. W. (1988). Dating Quaternary events by luminescence. In “Dating Quaternary sediments” (Easterbook, D. J., Ed.), pp. 1350. Geological Society of America, Boulder, Co.Google Scholar
Berger, G. W., and Eyles, N. (1994). Thermoluminescence chronology of Toronto-area Quaternary sediments and implications for the extent of midcontinent ice sheets. Geology 22 , 3134.Google Scholar
Berger, G. W., and Hanson, K. L. (1992). Thermoluminescence ages of estuarine deposits associated with Quaternary marine terraces. In “Quaternary coasts of the United States: Marine and Lacustrine Systems” (C. Fletcher, H. I. and Wehmiller, J. F., Eds.), pp. 303308. Society for Sedimentary Geology, Tulsa, OK.CrossRefGoogle Scholar
Berger, G. W. Huntley, D. J., and Stipp, J. J. (1984). Thermoluminescence studies on a 14C-dated marine core. Canadian Journal of Earth Sciences 21 , 11451150.Google Scholar
Bevington, P. R. (1969). Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York.Google Scholar
Brigham-Grette, J., and Hopkins, D. M. (1995). Emergent marine record and paleoclimate of the last interglaciation along the northwest Alaskan coast. Quaternary Research 43 , 159173.Google Scholar
Coulter, H. W. Hopkins, D. M. Karlstrom, T. N. V. Péwé, T. L. Wahrhaftig, C., and Williams, J. R. (1965). “Map Showing Extent of Glaciation in Alaska.” U.S. Geological Survey Miscellaneous Geologic Investigations Map I-415.Google Scholar
Detterman, R. L. (1986). Glaciation of the Alaska Peninsula. In “Glaciation in Alaska—The Geologic Record” (Hamilton, T. D. Reed, K. M., and Thorson, R. M., Eds.), pp. 151169. Alaska Geological Society, Anchorage, AK. Devore, J. L. (1987). “Probability and Statistics for Engineering and the Sciences.” Brooks/Cole, Belmont, CA.Google Scholar
Forman, S. L. (1989). Applications and limitations of thermoluminescence to date Quaternary sediments. Quaternary International 1 , 4759.Google Scholar
Forman, S., and Ennis, G. (1992). Limitations of thermoluminescence to date waterlain sediments from glaciated fiord environments of western Spitsbergen, Svalbard. Quaternary Science Reviews 11 , 6170.Google Scholar
Forman, S. L. Winter, A. G. Thorleifson, H. L., and Wyatt, P. H. (1987). Thermoluminescence properties and age estimates for Quaternary raised marine sediments, Hudson Bay Lowland, Canada. Canadian Journal of Earth Sciences 24 , 24052411.Google Scholar
Forman, S. L. Pierson, J. Smith, R. P. Hackett, W. R., and Valentine, G. (1994). Assessing the accuracy of thermoluminescence to date baked sediments beneath late Quaternary lava flows, Snake River Plain, Idaho. Journal of Geophysical Research 99 , 15,56915,576.Google Scholar
Forman, S. L. Lepper, K., and Pierson, J. (1994). Limitations of infra-red stimulated luminescence in dating high arctic marine sediments. Quaternary Geochronology (Quaternary Science Reviews) 13 , 545550.Google Scholar
Galloway, J. P. (1995). “Radiocarbon Dates from the Nushagak Peninsula, Southwestern Alaska.” U.S. Geological Survey Open File Report 95-583. 8 pp.Google Scholar
Godfrey-Smith, D. I. Huntley, D. J., and Chen, W. -H. (1988). Optical dating studies of quartz and feldspar sediment extracts. Quaternary Science Reviews 7 , 373380.Google Scholar
Hamilton, T. D. (1994). Late Cenozoic glaciation of Alaska. In “The Geology of Alaska” (Plafker, G. and Berg, H. C., Eds.), The Geology of North America Vol. G-1, pp. 813844. Geological Society of America, Boulder, CO.Google Scholar
Hamilton, T. D., and Brigham-Grette, J. (1991). The last interglaciation in Alaska: Stratigraphy and paleoecology of potential sites. Quaternary International 10–12, 4971.Google Scholar
Hamilton, T. D. Reed, K. M., and Thorson, R. M. (1986). Introduction and overview. In “Glaciation in Alaska: The Geologic Record” (Hamilton, T. D. Reed, K. M., and Thorson, R. M., Eds.), pp. 18. Alaska Geological Society, Anchorage, AK.Google Scholar
Hare, P. E. St. John, P. A., and Engel, M. H. (1985). Ion-exchange separation of amino acids. In “Chemistry and Biochemistry of the Amino Acids” (Garrett, G. C., Ed.), pp. 415443. Chapman and Hall, London.Google Scholar
Huntley, D. J., and Wintle, A. G. (1981). The use of alpha scintillation counting for measuring Th-230 and Pa-231 contents of ocean sediments. Canadian Journal of Earth Sciences 18 , 419432.Google Scholar
Huntley, D. W. Godfrey-Smith, D. I., and Thewalt, M. L. W. (1985). Optical dating of sediments. Nature 313 , 105107.Google Scholar
Huntley, D. J. Berger, G. W., and Bowman, S. G. E. (1988). Thermoluminescence responses to alpha and beta irradiations, and age determinations when the high does response is nonlinear. Nuclear Tracks and Radiation Measurements 105 , 279284.Google Scholar
Huntley, D. J. Hutton, J. T., and Prescott, J. R. (1993). The stranded beach-dune sequence of south-east south Australia: A test of thermoluminescence dating, 0-800 ka. Quaternary Science Reviews 12 , 120.Google Scholar
Huston, M. M. Brigham-Grette, J., and Hopkins, D. M. (1990). Paleogeo-graphic significance of middle Pleistocene glaciomarine deposits on Baldwin Peninsula, northwest Alaska. Annals of Glaciology 14 , 111114.Google Scholar
Hütt, G. Jaek, I., and Tchonka, J. (1988). Optical Dating: K-feldspars optical response stimulation spectra. Quaternary Science Reviews 7 , 381385.Google Scholar
Jensen, H. E., and Prescott, J. R. (1983). The thick-source alpha particle counting technique: Comparisons with other techniques and solutions to the problem of overcounting. PACT 9 , 2535.Google Scholar
Jerlov, N. G. (1976). “Marine Optics,” Elsevier, New York.Google Scholar
Kaufman, D. S. (1992). Aminostratigraphy of Pliocene-Pleistocene high-sea-level deposits, Nome coastal plain and adjacent nearshore area, Alaska. Geological Society of America Bulletin 104 , 4052.Google Scholar
Kaufman, D. S., and Brigham-Grette, J. (1993). Aminostratigraphic correlations and paleo-temperature implications, Pliocene-Pleistocene high-sea-level deposits, northwestern Alaska. Quaternary Science Reviews 12 , 2133.Google Scholar
Kaufman, D. S. Walter, R. C. Brigham-Grette, J., and Hopkins, D. M. (1991). Middle Pleistocene age of the Nome River glaciation, northwestern Alaska. Quaternary Research 36 , 277293.Google Scholar
Kaufman, D. S. Lea, P. D., and Forman, S. L. (1994). Early stage 5 glaciation, NE Bristol Bay, Alaska. Geological Society of America Abstracts with Programs 26 , A-514.Google Scholar
Lea, P. D. (1989). “Quaternary Environments and Depositional Systems of the Nushagak Lowland, Southwestern Alaska.” Ph.D. thesis, University of Colorado, Boulder.Google Scholar
Lea, P. D. (1990). Pleistocene glacial tectonism and sedimentation on a mac-rotidal piedmont coast, Ekuk Bluffs, southwestern Alaska. Geological Society of America Bulletin 102 , 12301245.Google Scholar
Lea, P. D. Elias, S. A., and Short, S. K. (1991). Stratigraphy and paleoenvironments of Pleistocene nonglacial deposits in the southern Nushagak lowland, southwestern Alaska. Arctic and Alpine Research 23 , 375391.Google Scholar
Lang, A. (1994). Infra-red stimulated luminescence dating of Holocene reworked silty sediments. Quaternary Geochronology (Quaternary Science Reviews) 13, 525528.Google Scholar
Levitus, S. (1982). “Climatological Atlas of the World Ocean.” NOAA Professional Paper 13 , U.S. Government Printing Office, Washington, DC.Google Scholar
Marquardt, D. W. (1963). An Algorithm for least-squares estimation of nonlinear parameters. Journal of the Society of Industrial and Applied Mathematics 11, 431441.Google Scholar
Miller, G. H. (1985). Aminostratigraphy of Baffin Island shell-bearing deposits. In “Quaternary Environments—Baffin Island, Baffin Bay and West Greenland” (Andrews, J. T., Ed.), pp. 394427. Allen and Unwin, UK.Google Scholar
Miller, G. H., and Brigham-Grette, J. (1989). Amino acid geochronology— Resolution and precision in carbonate fossils. Quaternary International 1 , 111128.Google Scholar
Miller, T. P., and Smith, R. L. (1987). Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska. Geology 15 , 434438.Google Scholar
Muller, E. H. (1952). The glacial history of the Naknek district, Bristol Bay region, Alaska. Geological Society of America Bulletin 63, 1284.Google Scholar
Press, W. H. Flannery, B. P. Teukolsky, S. A., and Vetterling, W. T. (1986).Google Scholar
“Numerical Recipes: The Art of Scientific Computing.” Cambridge Univ. Press, Cambridge, UK.Google Scholar
Riehle, J. R., and Detterman, R. L. (1993). “Quaternary Geologic Map of the Mount Katmai Quadrangle and Adjacent Parts of the Naknek and Afognak Quadrangles, Alaska.” U.S. Geological Survey Miscellaneous Investigations Map I-2032.Google Scholar
Smith, B. W. Aitken, M. J. Rhodes, E. J. Robinson, P. D., and Geldard, D. M. (1986). Optical dating: Methodical aspects. Radiation Protection Dosimetry 17 , 229233.Google Scholar
Spooner, N. A. Aitken, M. J. Smith, B. W. Franks, M., and McElroy, C. (1990). Archaeological dating by infrared-stimulated luminescence using a diode array. Radiation Protection Dosimetry 34 , 8386.Google Scholar
Stuiver, M., and Reimer, P. J. (1993). Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35 , 215230.Google Scholar
Waythomas, C. F. Lea, P. D., and Walter, R. C. (1993). Stratigraphic context of Old Crow tephra, Holitna Lowland, interior southwest Alaska. Quaternary Research 40 , 2029.Google Scholar
Wehmiller, J. F. (1984). Interlaboratory comparison of amino acid enantiomeric ratios in fossil Pleistocene mollusks. Quaternary Research 22 , 109120.Google Scholar
Wehmiller, J. F (1993). Applications of organic geochemistry for Quaternary research: Aminostratigraphy and aminochronology. In “Organic Geochemistry” (Engel, M. H., and Macko, S. A., Eds.), pp. 755783. Plenum, New York.Google Scholar
Westgate, J. A. Hamilton, T. D., and Gorton, M. P. (1983). Old Crow tephra—A new late Pleistocene stratigraphic marker across north-central Alaska and western Yukon Territory. Quaternary Research 19 , 3854.Google Scholar
Westgate, J. A. Walter, R. C. Pearce, G. W., and Gorton, M. P. (1985). Distribution, stratigraphy, petrochemistry, and paleomagnetism of the late Pleistocene Old Crow tephra in Alaska and the Yukon. Canadian Journal of Earth Sciences 22 , 893906.Google Scholar
Westgate, J. A. Stemper, B. A., and Péwé, T. L. (1990). A 3 m.y. record of Pliocene-Pleistocene loess in interior Alaska. Geology 18 , 858861.Google Scholar
Wobus, C. W. (1995). “Paleomagnetism of Upper-Pleistocene Sediments Along Nushagak Bay, Southwestern Alaska.” Senior thesis, Bowdoin College, Brunswick, ME.Google Scholar