Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T19:47:49.910Z Has data issue: false hasContentIssue false

Age and impacts of the caldera-forming Aniakchak II eruption in western Alaska

Published online by Cambridge University Press:  20 January 2017

J.J. Blackford
Affiliation:
Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
R.J. Payne*
Affiliation:
Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
M.P. Heggen
Affiliation:
Høgskolen i Bergen, Nygårdsgaten 112, N-5020 Bergen, Norway Department of Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway
A. de la Riva Caballero
Affiliation:
Department of Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway
J. van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands
*
*Corresponding author.E-mail address:[email protected] (R.J. Payne).

Abstract

The mid-Holocene eruption of Aniakchak volcano (Aniakchak II) in southwest Alaska was among the largest eruptions globally in the last 10,000 years (VEI-6). Despite evidence for possible impacts on global climate, the precise age of the eruption is not well-constrained and little is known about regional environmental impacts. A closely spaced sequence of radiocarbon dates at a peatland site over 1000 km from the volcano show that peat accumulation was greatly reduced with a hiatus of approximately 90–120 yr following tephra deposition. During this inferred hiatus no paleoenvironmental data are available but once vegetation returned the flora changed from a Cyperaceae-dominated assemblage to a Poaceae-dominated vegetation cover, suggesting a drier and/or more nutrient-rich ecosystem. Oribatid mites are extremely abundant in the peat at the depth of the ash, and show a longer-term, increasingly wet peat surface across the tephra layer. The radiocarbon sample immediately below the tephra gave a date of 1636–1446 cal yr BC suggesting that the eruption might be younger than previously thought. Our findings suggest that the eruption may have led to a widespread reduction in peatland carbon sequestration and that the impacts on ecosystem functioning were profound and long-lasting.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, T. Vegetational history of western Alaska during the Wisconsin glacial interval and Holocene. Hopkins, D., Matthews, J., Schweger, C., and Young, S. Palaeoecology of Beringia. (1982). Academic Press, New York. 7593.Google Scholar
Anderson, P.M., and Brubaker, L.B. Vegetation history of northcentral Alaska: a mapped summary of late-Quaternary pollen data. Quaternary Science Reviews 13, (1994). 7192.Google Scholar
Anderson, P.M., Reanier, R.E., and Brubaker, L.B. A 14,000-year pollen record from Sithylemenkat Lake, North-Central Alaska. Quaternary Research 33, (1990). 400404.Google Scholar
Baillie, M., and Munro, M. Irish tree rings, Santorini and volcanic dust veils. Nature 332, (1988). 344346.CrossRefGoogle Scholar
Begét, J., Mason, O., and Anderson, P. Age, extent and climatic significance of the c. 3400BP Aniakchak tephra, western Alaska, USA. The Holocene 2, (1992). 5156.Google Scholar
Behan-Pelletier, V.M. Ceratozetidae of the western North American Arctic. Canadian Entomology 117, (1985). 12871366.CrossRefGoogle Scholar
Behan-Pelletier, V.M. Limnozetes (Acari: Limnozetidae) of northeastern North America. Canadian Entomology 121, (1989). 453506.Google Scholar
Birks, H.H. Plant macrofossils. Smol, J.P., Birks, H.J.B., and Last, W.M. Terrestrial Algal and Siliceous Indicators. (2001). Kluwer Academic Publishers, Dordrecht, The Netherlands. 4974.Google Scholar
Birks, H.J.B., and Lotter, A.F. The impact of the Laacher See Volcano (11000 yr B.P.) on terrestrial vegetation and diatoms. Journal of Paleolimnology 11, (1994). 313322.Google Scholar
Birks, H.H., Gulliksen, S., Haflidason, H., Mangerud, J., and Possnert, G. New radiocarbon dates for the Vedde ash and the Saksunavtn ash from western Norway. Quaternary Research 45, (1996). 119127.Google Scholar
Blackford, J. Palaeoclimatic records from peat bogs. Trends in Ecology and Evolution 15, (2000). 193198.CrossRefGoogle ScholarPubMed
Blackford, J., Edwards, K., Dugmore, A., Cook, G., and Buckland, P. Icelandic volcanic ash and mid-Holocene Scots pine (Pinus sylvestris) pollen decline in northern Scotland. The Holocene 2, (1992). 260265.CrossRefGoogle Scholar
Borchardt, G.A., Aruscavage, P.J., and Millard, H.T. Correlation of the Bishop ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Petrology 42, (1972). 301306.Google Scholar
Briffa, K., Jones, P., Schweingruber, F., and Osborn, T. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393, (1998). 450455.Google Scholar
Bruins, H.J., and van der Plicht, J. The Thera olive branch, Akrotiri (Thera) and Palaikastro (Crete): comparing radiocarbon results of the Santorini eruption. Antiquity 88, 339 (2014). 282287.Google Scholar
Bruins, H.J., MacGillivray, J.A., Synolakis, C.E., Benjamini, C., Keller, J., Kisch, H.J., Klugel, A., and van der Plicht, J. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Archaeological Science 35, (2008). 191212.Google Scholar
Charman, D. Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quaternary Science Reviews 20, (2001). 17531764.Google Scholar
Cook, R.J., Barron, J.C., Papendick, R.I., and Williams, G.J. Impact on agriculture of the Mount St. Helens eruptions. Science 211, (1981). 1622.Google Scholar
Coulter, S.E., Pilcher, J.R., Plunkett, G., Baillie, M., Hall, V.A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., and Johnsen, S.J. Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. Journal of Geophysical Research 117, (2012). D21303 Google Scholar
Drouk, A.Y. Acarological analysis: problems of paleoecological reconstructions. Edwards, M.E., Sher, A.V., and Guthrie, R.D. Terrestrial Paleoenvironmental Studies in Beringia. (1997). The Alaska Quaternary Center, University of Alaska Fairbanks, Fairbanks. 9197.Google Scholar
Dugmore, A., Larsen, G., Newton, A., and Sugden, D. Geochemical stability of fine-grained silicic Holocene tephra in Iceland and Scotland. Journal of Quaternary Science 7, (1992). 173183.CrossRefGoogle Scholar
Dutton, E.G., and Christy, J.R. Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo. Geophysical Research Letters 19, (1992). 23132316.Google Scholar
Dwyer, R.B., and Mitchell, F.J.G. Investigation of the environmental impact of remote volcanic activity on north Mayo, Ireland, during the mid-Holocene. The Holocene 7, (1997). 113118.Google Scholar
Eastwood, W., Tibby, J., Roberts, N., Birks, H., and Lamb, H. The environmental impact of the Minoan eruption of Santorini (Thera): statistical analysis of palaeoecological data from Gölhisar, southwest Turkey. The Holocene 12, (2002). 431444.Google Scholar
Eastwood, W.J., Pearce, N.J.G., Westgate, J.A., Preece, S.J., and Perkins, W.T. Tephra geochemistry confirms the caldera-forming eruption of Aniakchak, not Santorini at 1645BC. PAGES News 12, (2004). 1214.Google Scholar
Edwards, J.S., and Schwartz, L.M. Mount St. Helens ash: a natural insecticide. Canadian Journal of Zoology 59, (1981). 714715.Google Scholar
Edwards, K.J., Buckland, P.C., Blackford, J.J., Dugmore, A.J., and Sadler, J.P. The impact of tephra: proximal and distal studies of Icelandic eruptions. Műnchener Geographische Abhandlungen Reihe B. Band B12, (1994). 7999.Google Scholar
Edwards, K.J., Dugmore, A.J., and Blackford, J.J. Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology. Polar Record 40, (2004). 113120.Google Scholar
Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., Talamo, S. Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312, (2006). 548 Google Scholar
Gauci, V., Dise, N., and Blake, S. Long-term suppression of wetland methane flux following a pulse of simulated acid rain. Geophysical Research Letters 32, (2005). L12804 Google Scholar
Gauci, V., Blake, S., Stevenson, D.S., and Highwood, E.J. Halving of the northern wetland CH4 source by a large Icelandic volcanic eruption. Journal of Geophysical Research 113, (2008). CrossRefGoogle Scholar
Giles, T., Newnham, R., Lowe, D., and Munro, A. Impact of tephra fall and environmental change: a 1000 year record from Matakana Island, Bay of Plenty, North Island, New Zealand. Firth, C., and McGuire, W. Volcanoes in the Quaternary. (1999). Geological Society, London.CrossRefGoogle Scholar
Gilyarov, M.S. A Key to the Soil-inhabiting Mites Sarcoptiformes. (1975). Nauka, Moscow. (Translated from Russian) Google Scholar
Grattan, J., and Charman, D. Non-climatic factors and the environmental impact of volcanic volatiles: implications of the Laki fissure eruption of AD 1783. The Holocene 4, (1994). 101106.Google Scholar
Grattan, J., and Gilbertson, D. Acid-loading from Icelandic tephra falling on acidified ecosystems as a key to understanding archaeological and environmental stress in northern and western Britain. Journal of Archaeological Science 21, (1994). 851859.CrossRefGoogle Scholar
Grattan, J., Gilbertson, D., and Charman, D. Modelling the impact of Icelandic volcanic eruptions upon prehistoric societies and environment of northern and western Britain. Firth, C., and McGuire, W. Volcanoes in the Quaternary. (1999). Geological Society, London.CrossRefGoogle Scholar
Hall, V.A. Assessing the impact of Icelandic volcanism on vegetation systems in the north of Ireland in the fifth and sixth millennia BC. The Holocene 13, (2003). 131138.Google Scholar
Hall, V.A., Pilcher, J.R., and McCormac, F.G. Icelandic volcanic ash and the mid-Holocene Scots pine (Pinus sylvestris) decline in the north of Ireland: no correlation. The Holocene 4, (1994). 7983.Google Scholar
Hammer, C., Clausen, H., Friedrich, W., and Tauber, H. The Minoan eruption of Santorini in Greece dated to 1645BC?. Nature 328, (1987). 517519.Google Scholar
Hammer, C., Kurat, G., Hoppe, P., Grum, W., and Clausen, H.B. Thera eruption date 1645 BC confirmed by new ice core data?. Bietak, M. The Synchronisation of Civilisations in the Eastern Mediterranean in the Second Millennium B.C.. (2003). Austrian Academy of Sciences, Vienna.Google Scholar
Heggen, M.P., Birks, H.H., and Anderson, N.J. Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. The Holocene 20, (2010). 12071222.Google Scholar
Heggen, M.P., Birks, H.H., Heiri, O., Grytnes, J.A., and Birks, H.J.B. Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains?. Journal of Paleolimnology 48, (2012). 669691.Google Scholar
Hotes, S., Poschlod, P., Sakai, H., and Inoue, T. Vegetation, hydrology, and development of a coastal mire in Hokkaido, Japan, affected by flooding and tephra deposition. Canadian Journal of Botany 79, (2001). 341361.Google Scholar
Hughes, P.D.M., Mallon, G., Brown, A., Essex, H.J., Stanford, J.D., and Hotes, S. The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quaternary Science Reviews 67, (2013). 160175.Google Scholar
Hunt, J.B., and Hill, P.G. Tephra geochemistry: a discussion of some persistent analytical problems. The Holocene 3, (1993). 271278.Google Scholar
Jones, G.S., Gregory, J.M., Stott, P.A., Tett, S.F.B., and Thorpe, R.B. An AOGCM simulation of the climate response to a volcanic super-eruption. Climate Dynamics 45, (2005). 725738.Google Scholar
Kaufman, D.S., Jensen, B.J.L., Reyes, A.V., Schiff, C.J., Froese, D.G., and Pearce, N.J.G. Late Quaternary tephrostratigraphy, Ahklun Mountains, SW Alaska. Journal of Quaternary Science 27, (2012). 344359.Google Scholar
Keenan, D.J. Volcanic ash retrieved from the GRIP ice core is not from Thera. Geochemistry, Geophysics, Geosystems 4, (2003). 11 Google Scholar
Kilian, M.R., Van der Plicht, J., and Van Geel, B. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14, (1995). 959966.Google Scholar
Krivolutskii, D.A., and Lebedeva, N.V. Oribatid mites (Oribatei) in bird feathers: Passeriformes. Acta Zoologica Lituanica 14, (2004). 1938.Google Scholar
LaMarche, V., and Hirschboek, K. Frost rings in trees as records of major volcanic eruptions. Nature 307, (1984). 121126.CrossRefGoogle Scholar
Larsen, J., Bjune, A., and de la Riva Caballero, A. Holocene environmental and climate history of Trettetjørn, a low-alpine lake in western Norway, based on subfossil pollen, diatoms, oribatid Mites, and plant macrofossils. Arctic, Antarctic, and Alpine Research 38, (2006). 571583.Google Scholar
Lebedeva, N.V., and Krivolutskii, D.A. Birds spread soil microarthropods to arctic islands. Doklady Biological Sciences 391, (2003). 329332.Google Scholar
Lotter, A., and Birks, H. The impact of the Laacher See tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. Journal of Quaternary Science 8, (1993). 263276.Google Scholar
Manning, S. Dating of the Santorini eruption. Nature 332, (1988). 401 Google Scholar
Manning, S. Correction. New GISP2 ice-core evidence supports 17th Century BC date for the Santorini (Minoan) eruption: response to Zielinski & Germani (1998). Journal of Archaeological Science 25, (1998). 10391042.Google Scholar
Marske, K.A., Ivie, M.A., and Hilton, G.M. Effects of volcanic ash on the forest canopy insects of Montserrat, West Indies. Environmental Entomology 36, (2007). 817825.Google Scholar
McCormick, M., Thomason, L., and Trepte, C. Atmospheric effects of the Mt Pinatubo eruption. Nature 373, (1995). 399404.Google Scholar
Melekestev, I.V., and Miller, T.P. On the origin of the 1645 BC oxygen peak in the Greenland ice sheet. Volcanology and Seismology 19, (1997). 163166.Google Scholar
Miller, T., and Smith, R. Late Quaternary caldera-forming eruptions in the eastern Aleutian volcanic arc, Alaska. Geology 15, (1987). 434438.Google Scholar
Moore, P.D., Webb, J., and Collinson, M. Pollen Analysis. (1991). Blackwell Scientific Publications, Oxford.Google Scholar
Neal, C.A., McGimsey, R.G., Braitseva, O., Miller, T.P., Eichelberger, J.C., and Nye, C. Post-caldera eruptive history of Aniakchak caldera, Alaska. Eos 73, (1992). 645 Google Scholar
Neal, C., McGimsey, R.G., Miller, T.P., Riehle, J.R., and Waythomas, C.F. Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska. U.S. Geological Survey Open-File Report OF 00-0519. (2001). Google Scholar
Oswald, W.W., Brubaker, L., Hu, F.S., and Kling, G.W. Holocene pollen records from the central Arctic Foothills, northern Alaska: testing the role of substrate in the response of tundra to climate change. Journal of Ecology 91, (2003). 10341048.Google Scholar
Pavlichenko, P.G. A Guide to the Ceratozetoid Mites (Oribatei, Ceratozetoidae) of Ukraine (Translated From Russian). (1994). National Academy of Sciences of Ukraine I.I. Shmalhausen Institute of Zoology, Kiev.Google Scholar
Payne, R.J. Volcanic impacts on peatland microbial communities: a tephropalaeoecological hypothesis test. Quaternary International 268, (2012). 98110.Google Scholar
Payne, R.J. Seven reasons why protists make useful bioindicators. Acta Protozoologica 52, (2013). 105113.Google Scholar
Payne, R., and Blackford, J. Simulating the impacts of distal volcanic products upon peatlands in northern Britain: an experimental study on the Moss of Achnacree, Scotland. Journal of Archaeological Science 32, (2005). 9891001.Google Scholar
Payne, R., and Blackford, J. Volcanic impacts on peatlands: palaeoecological evidence from Alaska. Quaternary Science Reviews 27, (2008). 20122030.Google Scholar
Payne, R., and Gehrels, M. The formation of tephra layers in peatlands: an experimental approach. Catena 81, (2010). 1223.Google Scholar
Payne, R., Kilfeather, A., van der Meer, J., and Blackford, J. Experiments on the taphonomy of tephra in peatlands. Suo 56, (2005). 147156.Google Scholar
Payne, R., Kishaba, K., Blackford, J., and Mitchell, E. The ecology of testate amoebae in southcentral Alaskan peatlands: building transfer function models for palaeoenvironmental inference. The Holocene 16, (2006). 403414.Google Scholar
Payne, R.J., Edwards, K.J., and Blackford, J.J. Volcanic impacts on the Holocene vegetation history of Britain and Ireland? A review and meta-analysis of the pollen evidence. Vegetation History and Archaeobotany 22, (2013). 153164.Google Scholar
Pearce, N., Westgate, J., Preece, S., Eastwood, W., and Perkins, W. Identification of Aniakchak (Alaska) tephra in Greenland ice core challenges the 1645 BC date for Minoan eruption of Santorini. Geochemistry, Geophysics, Geosystems 5, (2004). Q03005 Google Scholar
Pilcher, J., Hall, V., and McCormac, F. Dates of Holocene Icelandic volcanic eruptions from tephra layers in Irish peats. The Holocene 5, (1995). 103110.Google Scholar
Plunkett, G., Pilcher, J.R., McCormac, F.G., and Hall, V.A. New dates for first millennium BC tephra isochrones in Ireland. The Holocene 14, (2004). 780786.Google Scholar
Rampino, M.R., and Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, (1992). 5052.Google Scholar
Ramsey, C.B. OxCal Program v. 3.10. (2005). Oxford University, UK.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J. IntCal13 and Marine13 Radiocarbon age calibration curves 0–50,000 years calBP. Radiocarbon 55, (2013). 18691887.Google Scholar
Riehle, J., Meyer, C., Ager, T., Kaufman, D., and Ackerman, R. The Aniakchak tephra deposit, a late Holocene marker horizon in western Alaska. US Geological Survey Circular 998, (1987). 1922.Google Scholar
Riva-Caballero, A., Birks, H.J.B., Bjune, A.E., Birks, H.H., and Solhøy, T. Oribatid mite assemblages across the tree-line in western Norway and their representation in lake sediments. Journal of Paleolimnology 44, (2010). 361374.Google Scholar
Salzer, M.W., and Hughes, M.K. Bristlecone pine tree rings and volcanic eruptions over the last 5000 years. Quaternary Research 67, (2007). 5768.Google Scholar
Schelvis, J. The reconstruction of local environments on the basis of remains of oribatid mites (Acari; Oribatida). Journal of Archaeological Science 17, (1990). 559571.Google Scholar
Schelvis, J. Mites in the background. Use and origin of remains of mites (Acari) in Quaternary deposits. Quaternary Proceedings 5, (1997). 233236.Google Scholar
Solhøy, I.W., and Solhøy, T. The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. Journal of Paleolimnology 23, (2000). 3547.Google Scholar
Stevenson, D.S., Johnson, C.E., Highwood, E.J., Gauci, V., Collins, W.J., and Derwent, R.G. Atmospheric impact of the 1783–1784 Laki eruption: part 1 chemistry modelling. Atmospheric Chemistry and Physics Discussions 3, (2003). 551596.Google Scholar
Strenzke, K. Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands. Zoologica 104, (1952). 1173.Google Scholar
Subias, L.S. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acaroformes: Oribatida) del mundo (Excepto fósiles). Graellsia 60, (2004). 3305.Google Scholar
ter Braak, C.J.F. Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1, (1994). 127140.Google Scholar
Thordarson, Th., and Self, S. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. Journal of Geophysical Research 108, D1 (2003). 4011 Google Scholar
van der Plicht, J., Wijma, S., Aerts, A.T., Pertuisot, M.H., and Meijer, H.A.J. The Groningen AMS facility: status report. Nuclear Instruments and Methods B172, (2000). 5865.Google Scholar
VanderHoek, R., and Myron, R. Cultural Remains from a Catastrophic Landscape: an Archaeological Overview and Assessment of Aniakchak National Monument and Preserve. (2004). U.S. Department of the Interior, Anchorage.Google Scholar
VanderHoek, R., and Nelson, R.E. Ecological roadblocks on a constrained landscape: the cultural effects of catastrophic Holocene volcanism on the Alaska peninsula, southwest Alaska. Abstracts of the Fifth World Archaeological Congress, June 21–26, 2003, Washington D.C.. (2003). 332333.Google Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.-L., Steffensen, J.P., Svensson, A., Olsen, J., and Heinemeier, J. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research 111, (2006). D13102 Google Scholar
Vogel, J.S., Cornell, W., Nelson, D.E., and Southon, J.R. Vesuvius/Avellino, one possible source of seventeenth century BC climatic disturbances. Nature 334, (1990). 534537.Google Scholar
Walter, D., and Proctor, H. Mites: Ecology, Evolution and Behaviour. (1999). CABI Publishing, New York.Google Scholar
Wastegård, S., Rundgren, M., Schoning, K., Andersson, S., Bjorck, S., Borgmark, A., and Possnert, G. Age, geochemistry and distribution of the mid-Holocene Hekla-S/Kebister tephra. The Holocene 18, (2008). 539549.Google Scholar
Waythomas, C.F., and Neal, C.A. Tsunami generation by pyroclastic flow during the 3500-year BP caldera-forming eruption of Aniakchak Volcano, Alaska. Bulletin of Volcanology 60, (1998). 110124.Google Scholar
Weigmann, G. Hornmilben (Oribatida). (2006). Goecke & Evres, Keltern, Germany.Google Scholar
Yu, Z. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, (2012). 40714085.Google Scholar
Zielinski, G.A. Use of paleo-records in determining variability within the volcanism–climate system. Quaternary Science Reviews 19, (2000). 417438.Google Scholar
Zielinski, G., and Germani, M. New ice-core evidence challenges the 1620s BC age of the Santorini (Minoan) eruption. Journal of Archaeological Science 25, (1998). 279289.Google Scholar
Zielinski, G., and Germani, M. Reply to: correction. New GISP2 Ice-core evidence supports 17th Century BC date for the Santorini (Minoan) eruption. Journal of Archaeological Science 25, (1998). 10431045.Google Scholar
Supplementary material: File

Blackford et al. supplementary material

Table S1

Download Blackford et al. supplementary material(File)
File 14 KB