Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-31T23:58:01.490Z Has data issue: false hasContentIssue false

Absence of Saharan dust influence on the strontium isotope ratios on modern trees from the Bahamas and Turks and Caicos Islands

Published online by Cambridge University Press:  03 April 2018

Rick Schulting*
Affiliation:
School of Archaeology, University of Oxford, 1-2 South Parks Road, Oxford, OX1 3TG, United Kingdom
Mike Richards
Affiliation:
Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
John Pouncett
Affiliation:
School of Archaeology, University of Oxford, 1-2 South Parks Road, Oxford, OX1 3TG, United Kingdom
Bryan Naqqi Manco
Affiliation:
Department of Environment and Coastal Resources, National Environmental Centre, Lower Bight Road, Providenciales, Turks and Caicos Islands
Ethan Freid
Affiliation:
Bahamas National Trust/Leon Levy Native Plant Preserve, P.O. Box N-4105, Nassau, The Bahamas
Joanna Ostapkowicz
Affiliation:
School of Archaeology, University of Oxford, 1-2 South Parks Road, Oxford, OX1 3TG, United Kingdom
*
*Corresponding author at: School of Archaeology, University of Oxford, 1-2 South Parks Road, Oxford, OX1 3TG, United Kingdom. E-mail address: [email protected] (R. Schulting).

Abstract

We report on strontium (87Sr/86Sr) isotope results from 91 modern trees growing on the Bahamas and Turks and Caicos Islands. The average 87Sr/86Sr ratio of 0.709169±0.000010 is consistent with the late Quaternary limestone of the islands and with the modern ocean value. The absence of any detectable influence of 87Sr-enriched Saharan dust is notable, given the known contribution of this material to both past and recent soils of the Caribbean. Our results indicate that the impact of Saharan dust to the modern biosphere of the Bahamian archipelago is at least an order of magnitude less than modeled in currently available strontium isoscapes for the circum-Caribbean. We suggest that the bioavailability of Sr in Saharan dust may be considerably less than previously thought. Nevertheless, further work could usefully be carried out in the Bahamian archipelago on plants with different rooting depths, growing on different soil types and on limestone of different ages. Our results have particular relevance for the refinement of existing strontium isoscapes and the archaeological provenience of artifacts, animals, and people in the circum-Caribbean.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The online version of this article has been updated since original publication. A notice detailing the changes has also been published at https://doi.org/10.1017/qua.2018.45.

References

REFERENCES

Aarons, S.M., Aciego, S.M., Gleason, J.D., 2013. Variable Hf–Sr–Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere. Chemical Geology 349–350, 1826.Google Scholar
Åberg, G., Jacks, G., Wickman, T., Hamilton, P.J., 1990. Strontium isotopes in trees as an indicator for calcium availability. Catena 17, 111.CrossRefGoogle Scholar
Angino, E.E., Billings, G.K., Andersen, N., 1996. Observed variations in the strontium concentration of sea water. Chemical Geology 1, 145153.Google Scholar
Baes, C.F., Garten, C.T., Taylor, F.G., Witherspoon, J.P., 1986. Long-term environmental problems of radioactively contaminated land. Environment International 12, 543553.Google Scholar
Bain, D.C., Bacon, J.R., 1994. Strontium isotopes as indicators of mineral weathering in catchments. Catena 22, 201214.CrossRefGoogle Scholar
Bataille, C.P., Bowen, G.J., 2012. Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chemical Geology 304–305, 3952.Google Scholar
Bataille, C.P., Laffoon, J., Bowen, G.J., 2012. Mapping multiple source effects on the strontium isotopic signatures of ecosystems from the Circum-Caribbean region. Ecosphere 3, 118.CrossRefGoogle Scholar
Bern, C.R., Townsend, A.R., Farmer, G.L., 2005. Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86, 626632.Google Scholar
Boardman, M.R., McCartney, R.F., Eaton, M.R., 1995. Bahamian paleosols: origin, relation to paleoclimate, and stratigraphic significance. In: Curran, H.A., White, B. (Eds.), Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Geological Society of America, Special Papers 300, 3349.Google Scholar
Borg, L.E., Banner, J.L., 1996. Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochimica et Cosmochimica Acta 60, 41934206.Google Scholar
Bowen, G.J., 2017. Gridded maps of the isotopic composition of meteoric waters (accessed September 18, 2017). http://www.waterisotopes.org.Google Scholar
Bricker, O., Mackenzie, F.T, 1970. Limestones and red soils of Bermuda: discussion. Geological Society of America Bulletin 81, 25232524.Google Scholar
Capo, R.C., DePaolo, D.J., 1990. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science 249, 5155.Google Scholar
Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197225.Google Scholar
Caquineau, S., Gaudichet, A., Gomes, L., Legrand, M., 2002. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. Journal of Geophysical Research, Atmospheres 107, AAC 4-1AAC 4-12.CrossRefGoogle Scholar
Carew, J.L., Mylroie, J.E., 1985. The Pleistocene and Holocene stratigraphy of San Salvador Island, Bahamas, with reference to marine and terrestrial lithofacies at French Bay. In: Curran, H.A. (Ed.), Pleistocene and Holocene Carbonate Environments on San Salvador Island, Bahamas. CCFL Bahamian Field Station, Ft. Lauderdale, pp. 1161.Google Scholar
Carew, J.L., Mylroie, J.E., 1995. Depositional model and stratigraphy for the Quanternary geology of the Bahama Islands. In: Curran, H.A., White, B. (Eds.), Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Geological Society of America, Special Papers 300, 532.Google Scholar
Carew, J.L., Mylroie, J.E., 1997. Geology of the Bahamas. In: Vacher, H.L., Quinn, T. (Eds.), Geology and Hydrogeology of Carbonate Islands. Elsevier, Amsterdam, pp. 91139.Google Scholar
Chen, J.H., Curran, H.A., White, B., Wasserburg, G.J., 1991. Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103, 8297.Google Scholar
Colarco, P.R., Toon, O.B., Holben, B.N., 2003. Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations. Journal of Geophysical Research–Atmospheres 108, 8589. http://dx.doi.org/10.1029/2002JD002658.Google Scholar
Copeland, S.R., Sponheimer, M., le Roux, P.J., Grimes, V., Lee-Thorp, J.A., de Ruiter, D.J., Richards, M.P., 2008. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Communications in Mass Spectrometry 22, 31873194.Google Scholar
Correll, D.S., Correll, B., 1982. Flora of the Bahama Archipelago, including the Turks and Caicos Islands. A. R. Gantner Verlag, Vaduz.Google Scholar
Delany, A.C., Parkin, D.W., Griffin, J.J., Goldberg, E.D., Reimann, B.E.F., 1967. Airborne dust collected at Barbados. Geochemica et Cosmochemica Acta 31, 885909.CrossRefGoogle Scholar
Dia, A.N., Cohen, A.S., Onions, R.K., Shackleton, N.J., 1992. Seawater Sr isotope variation over the past 300Kyr and influence of global climate cycles. Nature 356, 786788.Google Scholar
Ehlken, S., Kirchner, G., 2002. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. Journal of Environmental Radioactivity 58, 97112.Google Scholar
Evans, J.A., Montgomery, J., Wildman, G., Boulton, N., 2010. Spatial variations in biosphere 87Sr/86Sr in Britain. Journal of the Geological Society, London 167, 14.Google Scholar
Faure, G., 1986. Principles of Isotope Geology. John Wiley, New York.Google Scholar
Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37.Google Scholar
Foos, A.M., 1991. Aluminous lateritic soils, Eleuthera, Bahamas: a modern analogue to carbonate paleosols. Journal of Sedimentary Petrology 61, 340348.Google Scholar
Foos, A.M., Bain, R.J., 1995. Mineralogy, chemistry, and petrography of soils, surface crusts, and soil stones, San Salvador and Eleuthera, Bahamas. In: Curran, H.A., White, B. (Eds.), Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Geolological Society of America, Special Papers 300, 223232.Google Scholar
Formenti, P., Schutz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., Zhang, D., 2011. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmospheric Chemistry and Physics 11, 82318256.Google Scholar
French, C.D., Schenk, C.J., 2004. Map Showing Geology, Oil and Gas Fields, and Geologic Provinces of the Caribbean Region. Geological Survey, Open-File Report 97-470-K. Central Energy Resources Team, Denver.Google Scholar
Frost, C.D., Snoke, A.W., 1989. Tobago, West Indies, a fragment of a Mesozoic oceanic island arc: petro-chemical evidence. Journal of the Geological Society 146, 953964.Google Scholar
Glaccum, R.A., Prospero, J.M., 1980. Saharan aerosols over the tropical North Atlantic—mineralogy. Marine Geology 37, 295321.CrossRefGoogle Scholar
Gosz, J.R., Moore, D.I., 1989. Strontium isotope studies of atmospheric inputs to forested watersheds in New Mexico. Biogeochemistry 8, 115134.CrossRefGoogle Scholar
Goudie, A.S., Middleton, N.J., 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews 56, 179204.Google Scholar
Graustein, W.C., Armstrong, R.L., 1983. The use of strontium-87/strontium-86 ratios to measure transport into forested watersheds. Science 219, 289292.Google Scholar
Grousset, F.E., Biscaye, P.E., 1989. Nd and Sr isotopes as tracers of wind transport: Atlantic aerosols and surface sediments. In: Leinen, M., Sarnthein, M. (Eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic, Amsterdam, pp. 385400.Google Scholar
Grousset, F.E., Biscaye, P.E., 2005. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology 222, 149167.Google Scholar
Grousset, F.E., Rognon, P., Coudé-Gaussen, G., Pédemay, P., 1992. Origins of peri-Saharan dust deposits traced by their Nd and Sr isotopic composition. Palaeogeography, Palaeoclimatology, Palaeoecology 93, 203212.Google Scholar
Hartman, G., Richards, M., 2014. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean. Geochimicha et Cosmochimica Acta 126, 250254.Google Scholar
Hearty, P.J., 1998. The geology of Eleuthera Island, Bahamas: a Rosetta Stone of Quaternary stratigraphy and sea-level history. Quaternary Science Reviews 17, 333355.Google Scholar
Hearty, P.J., Kindler, P., 1993. New perspectives on Bahamian geology: San Salvador Island, Bahamas. Journal of Coastal Research 9, 577594.Google Scholar
Hearty, P.J., Kindler, P., 1997. The stratigraphy and surficial geology of New Providence and surrounding islands, Bahamas. Journal of Coastal Research 13, 798812.Google Scholar
Henderson, G.M., Martel, D.J., O’Nions, R.K., Shackleton, N.J., 1994. Evolution of seawater 87Sr/86Sr over the last 400 ka: the absence of glacial/interglacial cycles. Earth and Planetary Science Letters 128, 643651.Google Scholar
Herwitz, S.R., Muhs, D.R., Prospero, J.M., Vaughn, B., 1996. Origins of Bermuda’s clay-rich paleosols and their climatic significance. Journal of Geophysical Research: Atmospheres 101, 2338923400.Google Scholar
Hodell, D.A., Mead, G.A., Mueller, P.A., 1990. Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxes to the oceans. Chemical Geology: Isotope Geoscience Section 80, 291307.Google Scholar
Hodell, D.A., Quinn, R.L., Brenner, M., Kamenov, G., 2004. Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region: a tool for tracking ancient human migration. Journal of Archaeological Science 31, 585601.Google Scholar
Kamenov, G.D., Brenner, M., Tucker, J.L., 2009. Anthropogenic versus natural control on trace element and Sr–Nd–Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ∼1500 AD to present. Geochimica et Cosmochimica Acta 73, 35493567.Google Scholar
Kaufman, Y.J., Koren, I., Remer, L.A., Tanré, D., Ginoux, P., Fan, S., 2005. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research 119, D10S12. http://dx.doi.org/10.1029/2003JD004436.Google Scholar
Kennedy, M.J., Chadwick, O.A., Vitousek, P.M., Derry, L.A., Hendricks, D.M., 1998. Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26, 10151018.2.3.CO;2>CrossRefGoogle Scholar
Kindler, P, Godefroid, F., Chiaradia, M., Ehlert, C., Eisenhauer, A., Frank, M., Hasler, C.-A., Samankassou, E., 2011. Discovery of Miocene to early Pleistocene deposits of Mayaguana, Bahamas. Geology 39, 986–979.Google Scholar
Kroma, M.D., Cliff, R.A., Eijsink, L.M., Herut, B., Chester, R., 1999. The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes. Marine Geology 155, 319330.Google Scholar
Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., 2012. The Sr isotope composition of the world ocean, marginal and inland seas: implications for the Sr isotope stratigraphy. Stratigraphy and Geological Correlation 20, 501515.Google Scholar
Laffoon, J.E., Davies, G.R., Hoogland, M.L.P., Hofman, C.L., 2012. Spatial variation of biologically available strontium isotopes (87Sr/86Sr) in an archipelagic setting: a case study from the Caribbean. Journal of Archaeological Science 39, 23712384.Google Scholar
Laffoon, J.E., Hoogland, M.L.P., 2012. Migration and mobility in the circum-Caribbean: Integrating archaeology and isotopic analysis. In: Kaiser, E., Burger, J., Schier, W. (Eds.), Population Dynamics in Prehistory and Early History: New Approaches Using Stable Isotopes and Genetics. De Gruyter, Amsterdam, pp. 337353.Google Scholar
Laffoon, J.E., Rodríguez Ramos, R., Chanlatte Baik, L., Storde, Y.N., Rodríguez Lopez, M., Davies, G.R., Hofman, C.L., 2014. Long-distance exchange in the precolonial Circum-Caribbean: A multi-isotope study of animal tooth pendants from Puerto Rico. Journal of Anthropological Archaeology 35, 220233.Google Scholar
Laffoon, J.E., Sonnemann, T.F., Antczak, M.M., Antczak, A., 2016. Sourcing nonnative mammal remains from Dos Mosquises Island, Venezuela: new multiple isotope evidence. Archaeological and Anthropological Sciences. http://dx.do.org/10.1007/s12520-016-0453-6.Google Scholar
Laffoon, J.E., Sonnemann, T.F., Shafie, T., Hofman, C.L., Brandes, U., Davies, G.R., 2017. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches. PLoS ONE 12(2), e0172562. http://dx.doi.org/10.1371/journal.pone.0172562.Google Scholar
Lehnert, K., Su, Y., Langmuir, C.H., Sarbas, B., Nohl, U., 2000. A global geochemical database structure for rocks. Geochemistry Geophysics Geosystems 1. http://dx.doi.org/10.1029/1999GC000026.Google Scholar
Lembrechts, J., 1993. A review of literature on the effectiveness of chemical amendments in reducing the soil-to-plant transfer of radiostrontium and radiocesium. Science of the Total Environment 137, 8198.Google Scholar
Little, B.G., Buckley, D.K., Cant, R., Henry, P.W.T., Jefferies, A., Mather, J.D., Stark, J., Young, R.N., 1977. The Land Resources of the Bahamas: A Summary. Land Resources Division, Ministry of Overseas Development, Study 27.Google Scholar
Lovett, G.M., Lindberg, S.E., 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. Journal of Applied Ecology 21, 10131027.Google Scholar
McArthur, J.M., 1994. Recent trends in strontium isotope stratigraphy. Terra Nova 6, 331358.CrossRefGoogle Scholar
Montgomery, J., Evans, J.A., Neighbour, T., 2003. Sr isotope evidence for population movement within the Hebridean Norse community of NW Scotland. Journal of the Geological Society, London 160, 649653.Google Scholar
Mooney, C.N., 1905. Soils of the Bahama Islands. In: Shattuck, G.B. (Ed.), The Bahama Islands. Macmillan. New York, pp. 147184.Google Scholar
Muhs, D.R., Budahn, J.R., Prospero, J.M., Carey, S.N., 2007. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. Journal of Geophysical Research: Earth Surface, 112. http://dx.doi.org/10.1029/2005JF000445.Google Scholar
Muhs, D.R., Bush, C.A., Stewart, K.C., Rowland, T.R., Crittenden, R.C., 1990. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and Western Atlantic islands. Quaternary Research 33, 157177.Google Scholar
Muhs, D.R., Crittenden, R.C., Rosholt, J.N., Bush, C.A., Stewart, K.C., 1987. Genesis of marine terrace soils, Barbados, West Indies: Evidence from mineralogy and geochemistry. Earth Surface Processes and Landforms 12, 605618.CrossRefGoogle Scholar
Mylroie, J.E., Carew, J.L., 1995. Geology and karst geomorphology of San Salvador Island, Bahamas. Carbonates and Evaporites 10, 193206.Google Scholar
Nowottnick, E., Colarco, P., da Silva, A., Hlavka, D., McGill, M., 2011. The fate of Saharan dust across the Atlantic and implications for a Central American dust barrier. Atmospheric Chemistry and Physics 11, 84158431.Google Scholar
Ostapkowicz, J, 2015. Either a piece of domestic furniture of the Indians or one of their Gods’: the study of Lucayan duhos. Journal of Caribbean Archaeology 15, 6266.Google Scholar
Ostapkowicz, J., Brock, F., Wiedenhoeft, A., Snoeck, C., Pouncett, J., Baksh-Comeau, Y., Schulting, R., Boomert, A., 2017. Black pitch, carved histories: AMS 14C, wood ID and strontium results on prehistoric wood carvings from Trinidad’s Pitch Lake. Journal of Archaeological Science: Reports 16, 341358.Google Scholar
Ostapkowicz, J., Bronk Ramsey, C., Brock, F., Cartwright, C.R., Stacey, R., Richards, M., 2013. Birdmen, cemís and duhos: material studies and AMS 14C dating of Pre-Hispanic Caribbean wood sculptures in the British Museum. Journal of Archaeological Science 40, 46754687.Google Scholar
Ostapkowicz, J., Naqqi Manco, B., Richards, M., Wiedenhoeft, A., 2012. Hidden Stories: Trees and the charting of Lucayan histories. Times of the Islands Magazine Summer, 2227.Google Scholar
Pestle, W.J., Simonetti, A., Curet, L.A., 2013. 87Sr/86Sr variability in Puerto Rico: geological complexity and the study of paleomobility. Journal of Archaeological Science 40, 25612569.Google Scholar
Poszwa, A., Dambrine, E., Ferry, B., Pollier, B., Loubet, M., 2002. Do deep tree roots provide nutrients to the tropical rainforest? Biogeochemistry 60, 97118.Google Scholar
Prognon, F., Cojan, I., Kindler, P., Thiry, M., Demange, M., 2011. Mineralogical evidence for a local volcanic origin of the parent material of Bermuda Quaternary paleosols. Quaternary Research 75, 256266.Google Scholar
Prospero, J.M., 1999. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America 96, 33963403.Google Scholar
Prospero, J.M., Carlson, T.N., 1972. Vertical and areal distribution of Saharan dust over western equatorial North-AtlanticOcean. Journal of Geophysical Research: Atmospheres 77, 52555260.Google Scholar
Prospero, J.M., Collard, F.-X., Molinié, J., Jeannot, A., 2014. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochemical Cycles 28, 757773.Google Scholar
Prospero, J.M., Glaccum, R.A., Nees, R.T., 1981. Atmospheric transport of soil dust from Africa to South America. Nature 289, 570572.CrossRefGoogle Scholar
Prospero, J.M., Lamb, P.J., 2003. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 10241027.Google Scholar
Prospero, J.M., Mayol-Bracero, O.L., 2013. Understanding the transport and impact of African dust on the Caribbean basin. Bulletin of the American Meteorological Society 94, 13291337.Google Scholar
Prospero, J.M., Nees, R.T., 1986. Impact of North African drought and El Niño on mineral dust in the Barbados trade wind. Nature 320, 735738.Google Scholar
Prospero, J.M., Nees, R.T., Uematsu, M., 1987. Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. Journal of Geophysical Research:Atmospheres 92, 1472314731.Google Scholar
Pushkar, P., Steuber, A.M., Tomblin, J.F., Julian, G.M., 1973. Strontium isotopic ratios in volcanic rocks from St. Vincent and St. Lucia, Lesser Antilles. Journal of Geophysical Research-Oceans 78, 12791287.Google Scholar
Reinhardt, E.G., Blenkinsop, J., Patterson, R.T., 1999. Assessment of a Sr isotope vital effect (87Sr/86Sr) in marine taxa from Lee Stocking Island, Bahamas. Geo-Marine Letters 18, 241246.Google Scholar
Reynolds, A.C., Betancourt, J.L., Quade, J., Patchett, P.J., Dean, J.S., Stein, J., 2005. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico. Journal of Archaeological Science 32, 10611075.Google Scholar
Reynolds, A.C., Quade, J., Betancourt, J.L., 2012. Strontium isotopes and nutrient sourcing in a semi-arid woodland. Geoderma 189–190, 574584.Google Scholar
Ridley, D.A., Heald, C.L., Prospero, J.M., 2014. What controls the recent changes in African mineral dust aerosol across the Atlantic? Atmospheric Chemistry and Physics 14, 57355747.Google Scholar
Rognon, P., Coudé-Gaussen, G., Revel, M., Grousset, F.E., Pedemay, P., 1996. Holocene Saharan dust deposition on the Cape Verde Islands: sedimentological and Nd-Sr isotopic evidence. Sedimentology 43, 359366.Google Scholar
Rummel, S., Hoelzl, S., Horn, P., Rossmann, A., Schlicht, C., 2010. The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chemistry 118, 890900.Google Scholar
Sears, W.H., Sullivan, S.O., 1978. Bahamas prehistory. American Antiquity 43, 325.Google Scholar
Sillen, A., Hall, G., Richardson, S., Armstrong, R., 1998. 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: implications for early hominid habitat preference–clues from context. Geochimica et Cosmochimica Acta 62, 24632472.Google Scholar
Spitzer, M., Wildenhain, J., Rappsilber, J., Tyers, M., 2014. BoxPlotR: a web tool for generation of box plots. Nature Methods 11, 121122.Google Scholar
Snoeck, C., 2014. Impact of strontium sea spray effect on the isotopic ratio (87Sr/86Sr) of plants in coastal Ireland. Quaternary Newsletter 134, 3739.Google Scholar
Snoeck, C., Pouncett, J., Ramsey, G., Meighan, I.G., Mattielli, N., Lee-Thorp, J.A., Schulting, R.J., 2016. Mobility during the Neolithic and Bronze Age in Northern Ireland explored using strontium isotope analysis of cremated human bone. American Journal of Physical Anthropology 160, 397413.Google Scholar
Syers, J.K., Jackson, M.L., Berkheiser, V.E., Clayton, R.N., Rex, R.W., 1969. Eolian sediment influence on pedogenesis during the Quaternary. Soil Science 107, 421427.Google Scholar
Vitousek, P.M., Kennedy, M.J., Derry, L.A., Chadwick, O.A., 1999. Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia 121, 255259.Google Scholar
Wanless, H.R., Dravis, J.J., Tedesco, L.P., Rossinsky, V., 1989. Carbonate Environments and Sequences of Caicos Platform, Field Trip Guidebook T374. American Geophysical Union, Washington, DC.Google Scholar
Whipkey, C.E., Capo, R.C., Chadwick, O.A., Stewart, B.W., 2000. The importance of sea spray to the cation budget of a coastal Hawaiian soil: a strontium isotope approach. Chemical Geology 168, 3748.Google Scholar
Whitaker, F.F., Smart, P.L., 1997. Hydrogeology of the Bahamian archipelago. In: Vacher, H.L., Quinn, T. (Eds.), Geology and Hydrogeology of Carbonate Islands. Elsevier, Amsterdam, pp. 183216.Google Scholar
Wood, J., 1996. The Geomorphological Characterisation of Digital Elevation Models. PhD dissertation, University of Leicester, Leicester. Available at: https://lra.le.ac.uk/handle/2381/34503.Google Scholar
Wood, J., 2009. The Landserf Manual, version 1.0 (accessed November 27, 2017). http://www.staff.city.ac.uk/~jwo/landserf/landserf230/doc/landserfManual.pdf.Google Scholar
Wunder, M., 2010. Using isoscapes to model probability surfaces for determining geographic origins. In: West, J., Bowen, G., Dawson, T., Tu, K. (Eds.), Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping. Springer, Dordrecht, pp. 251270.Google Scholar