Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T21:03:36.912Z Has data issue: false hasContentIssue false

Younger Dryas to early Holocene (12.9 to 8.1 ka) limnological and hydrological change at Barley Lake, California (northern California Coast Range)

Published online by Cambridge University Press:  01 April 2021

Jenifer A. Leidelmeijer
Affiliation:
Department of Geological Sciences, California State University, 800 North State College Boulevard, Fullerton, CA92834, USA
Matthew E.C. Kirby*
Affiliation:
Department of Geological Sciences, California State University, 800 North State College Boulevard, Fullerton, CA92834, USA
Glen MacDonald
Affiliation:
Department of Geography, University of California, 1255 Bunche Hall, Box 951524 Los Angeles, CA90095, USA
Joseph A. Carlin
Affiliation:
Department of Geological Sciences, California State University, 800 North State College Boulevard, Fullerton, CA92834, USA
Judith Avila
Affiliation:
Department of Geography, Environment, and Society, University of Minnesota, 414 Social Sciences Building, Minneapolis, MN55455, USA
Jiwoo Han
Affiliation:
Department of Geography, University of California, 1255 Bunche Hall, Box 951524 Los Angeles, CA90095, USA
Benjamin Nauman
Affiliation:
Department of Geography, University of California, 1255 Bunche Hall, Box 951524 Los Angeles, CA90095, USA
Sean Loyd
Affiliation:
Department of Geological Sciences, California State University, 800 North State College Boulevard, Fullerton, CA92834, USA
Kevin Nichols
Affiliation:
Department of Mathematics, California State University, 800 North State College Boulevard, Fullerton, CA92834, USA
Reza Ramezan
Affiliation:
Department of Statistics and Actuarial Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON, CanadaN2L 3G1
*
*Corresponding author email address:[email protected] (M.E.C. Kirby).

Abstract

Paleoperspectives of climate provide important information for understanding future climate, particularly in arid regions such as California, where water availability is uncertain from year to year. Here, we present a record from Barley Lake, California, focusing on the interval spanning the Younger Dryas (YD) to the early Holocene (EH), a period of acute and rapid global climate change. Twelve radiocarbon dates constrain the timing between 12.9 and 8.1 ka. We combine a variety of sediment analyses to infer changes in lake productivity, relative lake level, and runoff dynamics. In general, the lake is characterized by two states separated by a <200-year transition: (1) a variably deep, lower-productivity YD lake; and (2) a two-part variably shallow, higher-productivity EH lake. Inferred EH winter-precipitation runoff reveals dynamic multidecadal-to-centennial-scale variability, in agreement with the EH lake-level data. The Barley Lake archive captures both hemispheric and regional signals of climate change across the transition, suggesting a role for both ocean-atmosphere and insolation forcing. Our paleoperspective emphasizes California's sensitivity to climate change and how that change can generate abrupt shifts in limnological regimes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, D.P., West, G.J., 1983. Temperature and precipitation estimates through the last glacial cycle from Clear Lake, California, pollen data. Science 219, 168170.CrossRefGoogle Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., 2006. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.Google Scholar
Anderson, L., 2012. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American monsoon. Global and Planetary Change 92–93, 198208.CrossRefGoogle Scholar
Anderson, L., Wahl, D.B., Bhattacharya, T., 2020. Understanding rates of change: a case study using fossil pollen records from California to assess the potential for and challenges to a regional data synthesis. Quaternary International. https://doi.org/10.1016/j.quaint.2020.04.044.CrossRefGoogle Scholar
Anderson, N., Rippey, B., 1988. Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake. Limnology and Oceanography 33, 14761492.Google Scholar
Anderson, R.Y., 1977. Short term sedimentation response in lakes in western United States as measured by automated sampling. Limnology Oceanography 22, 423433.CrossRefGoogle Scholar
Barron, J.A., Heusser, L., Herbert, T., Lyle, M., 2003. High-resolution climate evolution of coastal northern California during the past 16,000 years. Paleoceanography 18. https://doi.org/10.1029/2002PA000768.CrossRefGoogle Scholar
Bi, K., Linderoth, T., Singhal, S., Vanderpool, D., Patton, J.L., Nielsen, R., Moritz, C., Good, J.M., 2019. Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLOS Genetics 15, e1008119.CrossRefGoogle Scholar
Bird, B.W., Kirby, M.E., 2006. An alpine lacustrine record of early Holocene North American monsoon dynamics from Dry Lake, southern California (USA). Journal of Paleolimnology 35, 179192.CrossRefGoogle Scholar
Bird, B.W., Lei, Y., Perello, M., Polissar, P.J., Yao, T., Finney, B., Bain, D., Pompeani, D., Thompson, L.G., 2017. Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir'pa Co, southeastern Tibet. The Holocene 27, 541552.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Blais, J.M., Kalff, J., 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40, 582588.CrossRefGoogle Scholar
Briles, C.E., Whitlock, C., Bartlein, P.J., Higuera, P., 2008. Regional and local controls on postglacial vegetation and fire in the Siskiyou Mountains, northern California, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 159169.CrossRefGoogle Scholar
Briles, C.E., Whitlock, C., Skinner, C.N., Mohr, J., 2011. Holocene forest development and maintenance on different substrates in the Klamath Mountains, northern California, USA. Ecology 92, 590601.CrossRefGoogle ScholarPubMed
Brown, S., Bierman, P., Lini, A., Davis, P.T., Southon, J., 2002. Reconstructing lake and drainage basin history using terrestrial sediment layers: analysis of cores from a post-glacial lake in New England, USA. Journal of Paleolimnology 28, 219236.CrossRefGoogle Scholar
Canfield, D.E., Berner, R.A., 1987. Dissolution and pyritization of magnetite in anoxia marine sediments. Geochimica et Cosmochimica Acta 51, 645659.CrossRefGoogle Scholar
Cayan, D.R., Dettinger, M.D., Diaz, H.F., Graham, N.E., 1998. Decadal variability of precipitation over western North America. Journal of Climate 11, 31483166.2.0.CO;2>CrossRefGoogle Scholar
Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., et al. , 2012. Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences 109, E11341142.CrossRefGoogle ScholarPubMed
Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press.CrossRefGoogle Scholar
Covault, J.A., Romans, B.W., Fildani, A., McGann, M., Graham, S.A., 2010. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system. The Journal of Geology 118, 247259.CrossRefGoogle Scholar
Crawford, J.N., Mensing, S.A., Lake, F.K., Zimmerman, S.R., 2015. Late Holocene fire and vegetation reconstruction from the western Klamath Mountains, California, USA: a multi-disciplinary approach for examining potential human land-use impacts. The Holocene 25, 13411357.CrossRefGoogle Scholar
Daniels, M.L., Anderson, S., Whitlock, C., 2005. Vegetation and fire history since the late Pleistocene from the Trinity Mountains, northwestern California, USA. The Holocene 15, 10621071.CrossRefGoogle Scholar
Das, T., Maurer, E.P., Pierce, D.W., Dettinger, M.D., Cayan, D.R., 2013. Increases in flood magnitudes in California under warming climates. Journal of Hydrology 501, 101110.CrossRefGoogle Scholar
Davis, M.B., Ford, M.S.J., 1982. Sediment focusing in Mirror Lake, New Hampshire. Limnology and Oceanography 27, 137150.CrossRefGoogle Scholar
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Dearing, J., 1991. Lake sediment records of erosional processes. In: Smith, J.P, Appleby, P.G., Battarbee, R.W., Dearing, J.A., Flower, R., Haworth, E.Y., Oldfield, F., O'Sullivan, P.E. (Eds.), Environmental History and Palaeolimnology: Proceedings of the Vth International Symposium on Palaeolimnology. Developments in Hydrobiology Series 67. Springer, Netherlands, pp. 99106.CrossRefGoogle Scholar
Dearing, J., 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology 18, 114.CrossRefGoogle Scholar
Dearing, J., 1999. Holocene environmental change from magnetic proxies in lake sediments. In: Maher, B.A., Thompson, R. (Eds.), Quaternary Climates, Environments and Magnetism. Cambridge University Press, New York, pp. 231278.CrossRefGoogle Scholar
Deininger, M., McDermott, F., Cruz, F.W., Bernal, J.P., Mudelsee, M., Vonhof, H., Millo, C., et al. , 2020. Inter-hemispheric synchroneity of Holocene precipitation anomalies controlled by Earth's latitudinal insolation gradients. Nature Communications 11, 5447.CrossRefGoogle ScholarPubMed
Dettinger, M.D., 2011. Climate change, atmospheric rivers, and floods in California: a multimodel analysis of storm frequency and magnitude changes. Journal of the American Water Resources Association 47, 514523.CrossRefGoogle Scholar
Dettinger, M.D., Cayan, D.R., Diaz, H.F., Meko, D.M., 1998. North–south precipitation patterns in western North America on interannual-to-decadal timescales. Journal of Climate 11, 30953111.2.0.CO;2>CrossRefGoogle Scholar
Dettinger, M.D., Ralph, F.M., Das, T., Neiman, P.J., Cayan, D.R., 2011. Atmospheric rivers, floods and the water resources of California. Water 3, 445478.CrossRefGoogle Scholar
Diffenbaugh, N.S., Ashfaq, M., Shuman, B., Williams, J.W., Bartlein, P.J., 2006. Summer aridity in the United States: response to mid-Holocene changes in insolation and sea surface temperature. Geophysical Research Letters 33. https://doi.org/10.1029/2006GL028012.CrossRefGoogle Scholar
Ericson, J.E., 1977. Egalitarian exchange systems in California: a preliminary view. In: Earle, T.K., Ericson, J.E. (Eds.), Exchange Systems in Prehistory. Elsevier, New York, pp. 109126.CrossRefGoogle Scholar
Ersek, V., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., 2012. Holocene winter climate variability in mid-latitude western North America. Nature Communications 3, 1219.CrossRefGoogle ScholarPubMed
Farnsworth, K.L., Milliman, J.D., 2003. Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example. Global and Planetary Change 39, 5364.CrossRefGoogle Scholar
Feng, D., Beighley, E., Raoufi, R., Melack, J., Zhao, Y., Iacobellis, S., Cayan, D., 2019. Propagation of future climate conditions into hydrologic response from coastal southern California watersheds. Climatic Change 153, 199218.CrossRefGoogle Scholar
Flaherty, J., Fredrickson, D., 1981. Archeological Investigations at Graves Cabin (CA-MEN-1609, CA-MEN-1614), Mendocino National Forest, California. U.S. Forest Service and U.S. Department of Agriculture, Renton, VA.Google Scholar
Gale, S.J., Hoare, P.G., 1991. Quaternary Sediments: A Laboratory Manual of the Petrography of Unlithified Rocks. Belhaven Press, New York.Google Scholar
Gray, A.B., Warrick, J.A., Pasternack, G.B., Watson, E.B., Goñi, M.A., 2014. Suspended sediment behavior in a coastal dry-summer subtropical catchment: effects of hydrologic preconditions. Geomorphology 214, 485501.CrossRefGoogle Scholar
Håkanson, L., Jansson, M., 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Harbert, R.S., Nixon, K.C., 2018. Quantitative Late Quaternary climate reconstruction from plant macrofossil communities in western North America. Open Quaternary 4, 8.CrossRefGoogle Scholar
Hermann, N.W., Oster, J.L., Ibarra, D.E., 2018. Spatial patterns and driving mechanisms of mid-Holocene hydroclimate in western North America. Journal of Quaternary Science 33, 421434.CrossRefGoogle Scholar
Heusser, L., 1998. Direct correlation of millennial-scale changes in western North America vegetation and climate with changes in the California current system over the past ~60 kyr. Paleoceanography 13, 252262.CrossRefGoogle Scholar
Hildebrandt, W.R., 2007. Northwest California: ancient lifeways among forested mountains, flowing rivers, and rocky ocean shores. In: Jones, T., Klar, K. (Eds.), California Prehistory: Colonization, Culture, and Complexity. AltaMira Press, Lanham, MD, pp. 8398.Google Scholar
Hildebrandt, W.R., Hayes, J.F., 1993. Settlement pattern change in the mountains of northwest California: a view from Pilot Ridge. In: Mikkelsen, P., Hildebrandt, W.R., Basgall, M.E. (Eds.), There Grows a Green Tree: Papers in Honor of David A. Fredrickson. Center for Archaeological Research at Davis, Davis, CA, pp. 107119.Google Scholar
Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnology and Oceanography 30, 11311143.CrossRefGoogle Scholar
Hilton, J., Lishman, J., 1985. The effect of redox changes on the magnetic susceptibility of sediments from a seasonally anoxic lake. Limnology and Oceanography 30, 907909.CrossRefGoogle Scholar
Hiner, C.A., Kirby, M.E., Bonuso, N., Patterson, W.P., Palermo, J., Silveira, E., 2016. Late Holocene hydroclimatic variability linked to Pacific forcing: evidence from Abbott Lake, coastal central California. Journal of Paleolimnology 56, 299313.CrossRefGoogle Scholar
Hodell, D.A., Schelske, C.L., 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography 43, 200214.CrossRefGoogle Scholar
Inman, D.L., Jenkins, S.A., 1999. Climate change and the episodicity of sediment flux of small California rivers. The Journal of Geology 107, 251270.CrossRefGoogle Scholar
Kam, J., Sheffield, J., 2016. Increased drought and pluvial risk over California due to changing oceanic conditions. Journal of Climate 29, 82698279.CrossRefGoogle Scholar
Karlin, R., Levi, S., 1983. Diagenesis of magnetic minerals in recent haemipelagic sediments. Nature 303, 327330.CrossRefGoogle Scholar
Kirby, M.E., Feakins, S.J., Bonuso, N., Fantozzi, J.M., Hiner, C.A., 2013. Latest Pleistocene to Holocene hydroclimates from Lake Elsinore, California. Quaternary Science Reviews 76, 115.CrossRefGoogle Scholar
Kirby, M.E., Feakins, S.J., Hiner, C.A., Fantozzi, J., Zimmerman, S.R.H., Dingemans, T., Mensing, S.A., 2014. Tropical Pacific forcing of Late-Holocene hydrologic variability in the coastal southwest United States. Quaternary Science Reviews 102, 2738.CrossRefGoogle Scholar
Kirby, M.E., Heusser, L., Scholz, C., Ramezan, R., Anderson, M.A., Markle, B., Rhodes, E., et al. , 2018. A late Wisconsin (32–10k cal ka BP) history of pluvials, droughts and vegetation in the Pacific south-west United States (Lake Elsinore, CA). Journal of Quaternary Science 33, 238254.CrossRefGoogle Scholar
Kirby, M.E., Knell, E.J., Anderson, W.T., Lachniet, M.S., Palermo, J., Eeg, H., Lucero, R., Murrieta, R., Arevalo, A., Silveira, E., 2015. Evidence for insolation and Pacific forcing of late glacial through Holocene climate in the central Mojave Desert (Silver Lake, CA). Quaternary Research 84, 174186.CrossRefGoogle Scholar
Kirby, M.E., Lund, S.P., Anderson, M.A., Bird, B.W., 2007. Insolation forcing of Holocene climate change in southern California: a sediment study from Lake Elsinore. Journal of Paleolimnology 38, 395417.CrossRefGoogle Scholar
Kirby, M.E., Lund, S.P., Patterson, W.P., Anderson, M.A., Bird, B.W., Ivanovici, L., Monarrez, P., Nielsen, S., 2010. A Holocene record of Pacific decadal oscillation (PDO)-related hydrologic variability in southern California (Lake Elsinore, CA). Journal of Paleolimnology 44, 819839.CrossRefGoogle Scholar
Kirby, M.E., Patterson, W.P., Lachniet, M., Noblet, J.A., Anderson, M.A., Nichols, K., Avila, J., 2019. Pacific southwest United States Holocene droughts and pluvials inferred from sediment δ18O (calcite) and grain size data (Lake Elsinore, California). Frontiers in Earth Science 7, 74.CrossRefGoogle Scholar
Kirby, M.E., Poulsen, C.J., Lund, S.P., Patterson, W.P., Reidy, L., Hammond, D.E., 2004. Late Holocene lake-level dynamics inferred from magnetic susceptibility and stable oxygen isotope data: Lake Elsinore, southern California (USA). Journal of Paleolimnology 31, 275293.CrossRefGoogle Scholar
Kirby, M.E., Zimmerman, S.R.H., Patterson, W.P., Rivera, J.J., 2012. A 9170-year record of decadal-to-multi-centennial scale pluvial episodes from the coastal Southwest United States: a role for atmospheric rivers? Quaternary Science Reviews 46, 5765.CrossRefGoogle Scholar
Kołaczek, P., Mirosław-Grabowska, J., Karpińska-Kołaczek, M., Stachowicz-Rybka, R., 2015. Regional and local changes inferred from lacustrine organic matter deposited between the late glacial and mid-Holocene in the Skaliska Basin (north-eastern Poland). Quaternary International 388, 5163.CrossRefGoogle Scholar
Lachniet, M.S., Asmerom, Y., Polyak, V. and Denniston, R., 2020. Great Basin paleoclimate and aridity linked to Arctic warming and tropical Pacific sea surface temperatures. Paleoceanography and Paleoclimatology 35. https://doi.org/10.1029/2019PA003785.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.CrossRefGoogle Scholar
Lehman, J.T., 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quaternary Research 5, 541550.CrossRefGoogle Scholar
Lenihan, J.M., Bachelet, D., Neilson, R.P., Drapek, R., 2008. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Climatic Change 87, 215230.CrossRefGoogle Scholar
Lora, J.M., Ibarra, D.E., 2019. The North American hydrologic cycle through the last deglaciation. Quaternary Science Reviews 226, 105991.CrossRefGoogle Scholar
Lora, J.M., Mitchell, J.L., Risi, C., Tripati, A.E., 2017. North Pacific atmospheric rivers and their influence on western North America at the last glacial maximum. Geophysical Research Letters 44, 10511059.CrossRefGoogle Scholar
Lora, J.M., Mitchell, J.L., Tripati, A.E., 2016. Abrupt reorganization of North Pacific and western North American climate during the last deglaciation. Geophysical Research Letters 43, 11,796711,804.CrossRefGoogle Scholar
MacDonald, G.M., Moser, K.A., Bloom, A.M., Porinchu, D.F., Potito, A.P., Wolfe, B.B., Edwards, T.W., Petel, A., Orme, A.R., Orme, A.J., 2008. Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas stade. Quaternary Research 70, 131140.CrossRefGoogle Scholar
MacDonald, G.M., Moser, K.A., Bloom, A.M., Potito, A.P., Porinchu, D.F., Holmquist, J.R., Hughes, J., Kremenetski, K.V., 2016. Prolonged California aridity linked to climate warming and Pacific sea surface temperature. Scientific Reports 6. https://doi.org/10.1038/srep33325.CrossRefGoogle ScholarPubMed
Mangerud, J., 2020. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 15.CrossRefGoogle Scholar
McGee, D., Donohoe, A., Marshall, J., Ferreira, D., 2014. Changes in ITCZ location and cross-equatorial heat transport at the last glacial maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters 390, 6979.CrossRefGoogle Scholar
Meighan, C.W., Haynes, C.V., 1970. The Borax Lake site revisited. Science 167, 12131221.CrossRefGoogle ScholarPubMed
Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867900.CrossRefGoogle Scholar
Mohr, J.A., Whitlock, C., Skinner, C.N., 2000. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA. The Holocene 10, 587601.CrossRefGoogle Scholar
Monier, E., Gao, X., Scott, J.R., Sokolov, A.P., Schlosser, C.A., 2015. A framework for modeling uncertainty in regional climate change. Climatic Change 131, 5166.CrossRefGoogle Scholar
Neelin, J.D., Langenbrunner, B., Meyerson, J.E., Hall, A., Berg, N., 2013. California winter precipitation change under global warming in the Coupled Model Intercomparison Project phase 5 ensemble. Journal of Climate 26, 62386256.CrossRefGoogle Scholar
Oster, J.L., Ibarra, D.E., Winnick, M.J., Maher, K., 2015. Steering of westerly storms over western North America at the last glacial maximum. Nature Geoscience 8, 201-205.CrossRefGoogle Scholar
Oster, J.L., Montañez, I.P., Sharp, W.D., Cooper, K.M., 2009. Late Pleistocene California droughts during deglaciation and Arctic warming. Earth and Planetary Science Letters 288, 434443.CrossRefGoogle Scholar
Peng, J., Yu, Z., Gautam, M.R., 2013. Pacific and Atlantic Ocean influence on the spatiotemporal variability of heavy precipitation in the western United States. Global and Planetary Change 109, 3845.CrossRefGoogle Scholar
Peterson, D.H., 1989. Aspects of Climate Variability in the Pacific and Western Americas. Geophysical Monograph Series 55. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
Pigati, J.S., Springer, K.B., Honke, J.S., 2019. Desert wetlands record hydrologic variability within the Younger Dryas chronozone, Mojave Desert, USA. Quaternary Research 91, 5162.CrossRefGoogle Scholar
Porter, K., Wein, A., Alpers, C., Baez, A., Barnard, P., Carter, J., Corsi, A., et al. ., 2011. Overview of the ARkStorm Scenario. U.S. Department of Interior and U.S. Geological Survey, Reston, VA.CrossRefGoogle Scholar
Pribyl, P., Shuman, B.N., 2017. A computational approach to Quaternary lake-level reconstruction applied in the central Rocky Mountains, Wyoming, USA. Quaternary Research 82, 249259.CrossRefGoogle Scholar
Qiu, L., Williams, D.F., Gvorzdkov, A., Karabanov, E., Shimaraeva, M., 1993. Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene. Geology 21, 2528.2.3.CO;2>CrossRefGoogle Scholar
Ralph, F.M., Dettinger, M.D., 2011. Storms, floods, and the science of atmospheric rivers. Eos 92, 265.CrossRefGoogle Scholar
Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., White, A.B., 2006. Flooding on California's Russian River: role of atmospheric rivers. Geophysical Research Letters 33. https://doi.org/10.1029/2006GL026689.CrossRefGoogle Scholar
Randsalu-Wendrup, L., Conley, D.J., Carstensen, J., Fritz, S.C., 2016. Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities. Journal of Paleolimnology 56, 114.CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.L., et al. ., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research D: Atmospheres 111. https://doi.org/10.1029/2005JD006079.CrossRefGoogle Scholar
Redmond, K.T., Koch, R.W., 1991. Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resources Research 27, 23812399.CrossRefGoogle Scholar
Renssen, H., Goosse, H., Roche, D.M., Seppä, H., 2018. The global hydroclimate response during the Younger Dryas event. Quaternary Science Reviews 193, 8497.CrossRefGoogle Scholar
Reynolds, R.L., Rosenbaum, J.G., van Metre, P., Tuttle, M., Callender, E., Goldin, A., 1999. Greigite (Fe3S4) as an indicator of drought: the 1912–1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA. Journal of Paleolimnology 21, 193206.CrossRefGoogle Scholar
Romans, B.W., Normark, W.R., McGann, M.M., Covault, J.A., Graham, S.A., 2009. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: implications for evaluating source-to-sink flux at millennial time scales. Geological Society of America Bulletin 121, 13941408.CrossRefGoogle Scholar
Routson, C.C., McKay, N.P., Kaufman, D.S., Erb, M.P., Goosse, H., Shuman, B.N., Rodysill, J.R., Ault, T., 2019. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 8387.CrossRefGoogle ScholarPubMed
Rypins, S., Reneau, S.L., Byrne, R., Montgomery, D.R., 1989. Palynologic and geomorphic evidence for environmental change during the Pleistocene-Holocene transition at Point Reyes Peninsula, central coastal California. Quaternary Research 32, 7287.CrossRefGoogle Scholar
Schonher, T., Nicholson, S., 1989. The relationship between California rainfall and ENSO events. Journal of Climate 2, 12581269.2.0.CO;2>CrossRefGoogle Scholar
Seager, R., Ting, M., Li, C., Naik, N., Cook, B., Nakamura, J., Liu, H., 2013. Projections of declining surface-water availability for the southwestern United States. Nature Climate Change 3, 482486.CrossRefGoogle Scholar
Shakun, J.D., Carlson, A.E., 2010. A global perspective on last glacial maximum to Holocene climate change. Quaternary Science Reviews 29, 18011816.CrossRefGoogle Scholar
Shuman, B., Henderson, A.K., Colman, S.M., Stone, J.R., Fritz, S.C., Stevens, L.R., Power, M.J., Whitlock, C., 2009. Holocene lake-level trends in the Rocky Mountains, USA. Quaternary Science Reviews 28, 18611879.CrossRefGoogle Scholar
Shuman, B.N., Serravezza, M., 2017. Patterns of hydroclimatic change in the Rocky Mountains and surrounding regions since the last glacial maximum. Quaternary Science Reviews 173, 5877.CrossRefGoogle Scholar
Stanley, D.J., Wear, C.M., 1978. The “mud-line”: an erosion-deposition boundary on the upper continental slope. Marine Geology 28, M19M29.CrossRefGoogle Scholar
Steinschneider, S., Ho, M., Williams, A.P., Cook, E.R., Lall, U., 2018. A 500-year tree ring-based reconstruction of extreme cold-season precipitation and number of atmospheric river landfalls across the southwestern United States. Geophysical Research Letters 45, 56725680.CrossRefGoogle Scholar
Tarduno, J.A., 1995. Superparamagnetism and reduction diagenesis in pelagic sediments: enhancement or depletion? Geophysical Research Letters 22, 13371340.CrossRefGoogle Scholar
Thompson, R., Battarbee, R.W., O'Sullivan, P., Oldfield, F., 1975. Magnetic susceptibility of lake sediments. Limnology and Oceanography 20, 687698.CrossRefGoogle Scholar
Vacco, D.A., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., 2005. A speleothem record of younger Dryas cooling, Klamath Mountains, Oregon, USA. Quaternary Research 64, 249256.CrossRefGoogle Scholar
Warrick, J.A., Barnard, P.L., 2012. The offshore export of sand during exceptional discharge from California rivers. Geology 40, 787790.CrossRefGoogle Scholar
Warrick, J.A., Melack, J.M., Goodridge, B.M., 2015. Sediment yields from small, steep coastal watersheds of California. Journal of Hydrology: Regional Studies 4, 516534.Google Scholar
Warrick, J.A., Mertes, L.A., 2009. Sediment yield from the tectonically active semiarid western transverse ranges of California. Geological Society of America Bulletin 121, 10541070.CrossRefGoogle Scholar
Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377392.CrossRefGoogle Scholar
West, G.J., 1993. The late Pleistocene-Holocene pollen record and prehistory of California's north coast ranges. In: Mikkelsen, P., Hildebrandt, W.R., Basgall, M.E. (Eds.), There Grows a Green Tree: Papers in Honor of David A. Fredrickson. Center for Archaeological Research at Davis, Davis, CA, pp. 219235.Google Scholar
Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman-Morales, J., Bishop, D.A., Balch, J.K., Lettenmaier, D.P., 2019. Observed impacts of anthropogenic climate change on wildfire in California. Earth's Future 7, 892910.CrossRefGoogle Scholar
Wing, I.S., Rose, A.Z.; Wein, A.M., 2016. Economic consequence analysis of the ARkStorm scenario. Natural Hazards Review 17, A4015002.CrossRefGoogle Scholar
Wise, E.K., 2010. Spatiotemporal variability of the precipitation dipole transition zone in the western United States. Geophysical Research Letters 37. https://doi.org/10.1029/2009GL042193.CrossRefGoogle Scholar
Wise, E.K., 2016. Five centuries of U.S. West Coast drought: occurrence, spatial distribution, and associated atmospheric circulation patterns. Geophysical Research Letters 43, 45394546.Google Scholar
Wong, C.I., Potter, G.L., Montañez, I.P., Otto-Bliesner, B.L., Behling, P., Oster, J.L., 2016. Evolution of moisture transport to the western U.S. during the last deglaciation. Geophysical Research Letters 43, 34683477.CrossRefGoogle Scholar
Xu, J.P., Swarzenski, P.W., Noble, M., Li, A.-C., 2010. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California. Marine Geology 269, 7488.CrossRefGoogle Scholar
Zimmerman, S.R., Wahl, D.B., 2020. Holocene paleoclimate change in the western US: the importance of chronology in discerning patterns and drivers. Quaternary Science Reviews 246, 106487.CrossRefGoogle Scholar