Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-03T19:26:03.821Z Has data issue: false hasContentIssue false

What the past can say about the present and future of fire

Published online by Cambridge University Press:  15 June 2020

Jennifer R. Marlon*
Affiliation:
Yale University, School of Environment, New Haven, CT, 06517, USA
*
Corresponding author e-mail address: [email protected] (J. Marlon)

Abstract

Wildfires are an integral part of most terrestrial ecosystems. Paleofire records composed of charcoal, soot, and other combustion products deposited in lake and marine sediments, soils, and ice provide a record of the varying importance of fire over time on every continent. This study reviews paleofire research to identify lessons about the nature of fire on Earth and how its past variability is relevant to modern environmental challenges. Four lessons are identified. First, fire is highly sensitive to climate change, and specifically to temperature changes. As long as there is abundant, dry fuel, we can expect that in a warming climate, fires will continue to grow unusually large, severe, and uncontrollable in fire-prone environments. Second, a better understanding of “slow” (interannual to multidecadal) socioecological processes is essential for predicting future wildfire and carbon emissions. Third, current patterns of burning, which are very low in some areas and very high in others—are often unprecedented in the context of the Holocene. Taken together, these insights point to a fourth lesson—that current changes in wildfire dynamics provide an opportunity for paleoecologists to engage the public and help them understand the potential consequences of anthropogenic climate change.

Type
Review Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abatzoglou, J.T., Williams, A.P., 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113(42), 1177011775.CrossRefGoogle ScholarPubMed
Agee, J.K., 1993. Fire ecology of Pacific Northwest forests. Island Press: Washington, D.C.Google Scholar
Andela, N., Morton, D.C., Giglio, L., Chen, Y., Van Der Werf, G.R., Kasibhatla, P.S., DeFries, R.S., Collatz, G.J., Hantson, S., Kloster, S., Bachelet, D., 2017. A human-driven decline in global burned area. Science 356(6345), 13561362.CrossRefGoogle ScholarPubMed
Andela, N., Morton, D.C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., Van Der Werf, G.R., Randerson, J.T., 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data 11(2).CrossRefGoogle Scholar
Archibald, S., Lehmann, C.E., Gómez-Dans, J.L., Bradstock, R.A., 2013. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences 110(16), 64426447.CrossRefGoogle ScholarPubMed
Archibald, S., Scholes, R.J., Roy, D.P., Roberts, G., Boschetti, L., 2010. Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire 19(7), 861878.CrossRefGoogle Scholar
Argiriadis, E., Battistel, D., McWethy, D.B., Vecchiato, M., Kirchgeorg, T., Kehrwald, N.M., Whitlock, C., Wilmshurst, J.M., Barbante, C., 2018. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Scientific Reports 8(1), 19.CrossRefGoogle ScholarPubMed
Ballew, M.T., Leiserowitz, A., Roser-Renouf, C., Rosenthal, S.A., Kotcher, J.E., Marlon, J.R., Lyon, E., Goldberg, M.H., Maibach, E.W., 2019. Climate change in the American mind: Data, tools, and trends. Environment: Science and Policy for Sustainable Development 61(3), 418.Google Scholar
Bartlein, P.J., Hostetler, S.W., Alder, J.R., 2014. Paleoclimate. In Climate Change in North America (1–51). Springer, Cham.Google Scholar
Bartlein, P.J., Hostetler, S.W., Shafer, S.L., Holman, J.O. and Solomon, A.M., 2008. Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986–96). International Journal of Wildland Fire, 17(1), 817.CrossRefGoogle Scholar
Behling, H., 1995. A high-resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14(3), 253268.CrossRefGoogle Scholar
Behling, H., 1997a. Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, ParanáState (South Brazil). Review of Palaeobotany and Palynology 97(1–2), 109121.CrossRefGoogle Scholar
Behling, H., 1997b. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 129(3–4), 407422.CrossRefGoogle Scholar
Behling, H., 2007. Late Quaternary vegetation, fire and climate dynamics of Serra do Araçatuba in the Atlantic coastal mountains of Paraná State, southern Brazil. Vegetation History and Archaeobotany 16 (2-3), 7785.CrossRefGoogle Scholar
Belcher, C.M., McElwain, J.C., 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321(5893), 1197.CrossRefGoogle ScholarPubMed
Belcher, C.M., Yearsley, J.M., Hadden, R.M., McElwain, J.C., Rein, G., 2010. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences 107(52), 2244822453.CrossRefGoogle ScholarPubMed
Berrío, J.C., Hooghiemstra, H., Marchant, R., Rangel, O., 2002. Late-glacial and Holocene history of the dry forest area in the south Colombian Cauca Valley. Journal of Quaternary Science 17(7), 667682.CrossRefGoogle Scholar
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S., et al. , 2019. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research 220, 2033.CrossRefGoogle Scholar
Bistinas, I., Harrison, S.P., Prentice, I.C., Pereira, J.M.C., 2014. Causal relationships vs. emergent patterns in the global controls of fire frequency. Biogeosciences, 11, 50875101.CrossRefGoogle Scholar
Black, M.P., 2001. Fire, vegetation, humans and climate: a record of change during the past millennium from the Kings Tablelands. Unpublished BSc Hons thesis, School of Geography, UNSW, Sydney.Google Scholar
Black, M.P., Mooney, S.D., 2006. Holocene fire history from the Greater Blue Mountains World Heritage area, New South Wales, Australia: the climate, humans and fire nexus. Regional Environmental Change, 6(1–2), 4151.CrossRefGoogle Scholar
Black, M.P., Mooney, S.D., Attenbrow, V., 2008. Implications of a 14,200 year contiguous fire record for understanding human-climate relationships at Goochs Swamp, New South Wales, Australia. The Holocene, 18, 437447CrossRefGoogle Scholar
Blarquez, O., Ali, A.A., Girardin, M.P., Grondin, P., Fréchette, B., Bergeron, Y., Hély, C., 2015. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Scientific Reports 5, 13356.CrossRefGoogle ScholarPubMed
Boer, M.M., Resco de Dios, V., Bradstock, R.A., 2020. Unprecedented burn area of Australian mega forest fires. Nature Climate Change 10, 171172. https://doi.org/10.1038/s41558-020-0716-1.CrossRefGoogle Scholar
Bonnefoy, P., Chan, S., 2017. “‘The Greatest Forest Disaster in Our History’: Wildfires Tear Through Chile,” NYTimes.com. https://www.nytimes.com/2017/01/25/world/americas/chile-wildfires.html.Google Scholar
Bowman, D.M., Balch, J., Artaxo, P., Bond, W.J., Cochrane, M.A., D'antonio, C.M., DeFries, R., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., 2011. The human dimension of fire regimes on Earth. Journal of Biogeography 38(12), 22232236.CrossRefGoogle ScholarPubMed
Bowman, D.M., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., 2009. Fire in the Earth system. Science 324(5926), 481484.CrossRefGoogle ScholarPubMed
Bowman, D.M., Williamson, G.J., Abatzoglou, J.T., Kolden, C.A., Cochrane, M.A., Smith, A.M., 2017. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution, 1(3), 16.CrossRefGoogle ScholarPubMed
Brando, P.M., Balch, J.K., Nepstad, D.C., Morton, D.C., Putz, F.E., Coe, M.T., Silvério, D., Macedo, M.N., Davidson, E.A., Nóbrega, C.C., Alencar, A., 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences 111(17), 63476352.CrossRefGoogle ScholarPubMed
Brando, P.M., Soares-Filho, B., Rodrigues, L., Assunção, A., Morton, D., Tuchschneider, D., Fernandes, E.C.M., Macedo, M.N., Oliveira, U., Coe, M.T., 2020. The gathering firestorm in southern Amazonia. Science Advances 6(2), p.eaay1632.CrossRefGoogle ScholarPubMed
Brittingham, A., Hren, M.T., Hartman, G., Wilkinson, K.N., Mallol, C., Gasparyan, B., Adler, D.S., 2019. Geochemical evidence for the control of fire by Middle palaeolithic Hominins. Scientific Reports 9 (1), 17.CrossRefGoogle ScholarPubMed
Brown, K.J., Clark, J.S., Grimm, E.C., Donovan, J.J., Mueller, P.G., Hansen, B.C.S., Stefanova, I., 2005. Fire cycles in North American interior grasslands and their relation to prairie drought. Proceedings of the National Academy of Sciences 102(25), 88658870.CrossRefGoogle ScholarPubMed
Brown, P.M., Gentry, C., Yao, Q., 2019. Historical and current fire regimes in ponderosa pine forests at Zion National Park, Utah: Restoration of pattern and process after a century of fire exclusion. Forest Ecology and Management 445, 112.CrossRefGoogle Scholar
Brugger, S.O., Gobet, E., Osmont, D., Behling, H., Fontana, S.L., Hooghiemstra, H., Morales-Molino, C., Sigl, M., Schwikowski, M., Tinner, W., 2019. Tropical Andean glacier reveals colonial legacy in modern mountain ecosystems. Quaternary Science Reviews 220, 113.CrossRefGoogle Scholar
Bühler, M.D., de Torres Curth, M., Garibaldi, L.A., 2013. Demography and socioeconomic vulnerability influence fire occurrence in Bariloche (Argentina). Landscape and Urban Planning 110, 6473.CrossRefGoogle Scholar
Buma, B., Harvey, B.J., Gavin, D.G., Kelly, R., Loboda, T., McNeil, B.E., Marlon, J.R., Meddens, A.J.H., Morris, J.L., Raffa, K.F., Shuman, B., 2019. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landscape Ecology 34(1), 1733.CrossRefGoogle Scholar
Burls, N.J., Blamey, R.C., Cash, B.A., Swenson, E.T., al Fahad, A., Bopape, M.J.M., Straus, D.M., Reason, C.J., 2019. The Cape Town “Day Zero” drought and Hadley cell expansion. Npj Climate and Atmospheric Science 2(1), 18.CrossRefGoogle Scholar
Burney, D.A., 1987. Late Quaternary stratigraphic charcoal records from Madagascar. Quaternary Research 28(2), 274280.CrossRefGoogle Scholar
Bush, M.B., Hansen, B.C., Rodbell, D.T., Seltzer, G.O., Young, K.R., León, B., Abbott, M.B., Silman, M.R. and Gosling, W.D., 2005. A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science: Published for the Quaternary Research Association, 20(7–8), 703714.CrossRefGoogle Scholar
Caballero, M., Vázquez, G., Lozano-García, S., Rodríguez, A., Sosa-Nájera, S., Ruiz-Fernández, A.C., Ortega, B., 2006. Present limnological conditions and recent (ca. 340 yr) palaeolimnology of a tropical lake in the Sierra de Los Tuxtlas, Eastern Mexico. Journal of Paleolimnology 35(1), 8397.CrossRefGoogle Scholar
Calder, W.J., Parker, D., Stopka, C.J., Jiménez-Moreno, G., Shuman, B.N., 2015. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proceedings of the National Academy of Sciences 112(43), 1326113266.CrossRefGoogle ScholarPubMed
Calder, W.J., Stefanova, I., Shuman, B., 2019. Climate–fire–vegetation interactions and the rise of novel landscape patterns in subalpine ecosystems, Colorado. Journal of Ecology 107(4), 16891703.CrossRefGoogle Scholar
Camarero, J.J., Sangüesa-Barreda, G., Pérez-Díaz, S., Montiel-Molina, C., Seijo, F. and López-Sáez, J.A., 2019. Abrupt regime shifts in post-fire resilience of Mediterranean mountain pinewoods are fuelled by land use. International Journal of Wildland Fire, 28(5), 329341.CrossRefGoogle Scholar
Carcaillet, C., Richard, P.J.H., 2000. Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Climate Dynamics 16(7), 549559.CrossRefGoogle Scholar
Census Bureau, US, 2019. Camp Fire - 2018 California Wildfires. Retrieved April 29, 2020, from https://www.census.gov/topics/preparedness/events/wildfires/camp.html.Google Scholar
Chalson, J.M., 1991. The Late Quaternary vegetation and climatic history of the Blue Mountains, N.S.W. Australia. Unpublished PhD thesis, University of N.S.W.Google Scholar
Christian, H.J., Blakeslee, R.J., Boccippio, D.J., Boeck, W.L., Buechler, D.E., Driscoll, K.T., Goodman, S.J., Hall, J.M., Koshak, W.J., Mach, D.M., Stewart, M.F., 2003. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres 108(D1), ACL-4.CrossRefGoogle Scholar
Chuvieco, E, Giglio, L, Justice, C., 2008. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Global Change Biology 14:14881502.CrossRefGoogle Scholar
Clark, J.S., 1988. Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quaternary Research 30(1), 8191.CrossRefGoogle Scholar
Clement, R.M., Horn, S.P., 2001. Pre-Columbian land-use history in Costa Rica: a 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. The Holocene 11(4), 419426. https://www.climatecentral.org/news/wildfire-burning-greenland-21686.CrossRefGoogle Scholar
Collinson, M.E., Steart, D.C., Scott, A.C., Glasspool, I.J., Hooker, J.J., 2007. Episodic fire, runoff and deposition at the Palaeocene-Eocene boundary. Journal of the Geological Society 164 (1), 8797.CrossRefGoogle Scholar
Colombaroli, D., Ssemmanda, I., Gelorini, V. and Verschuren, D., 2014. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa. Global change biology, 20(9), 29032914.CrossRefGoogle ScholarPubMed
Colombaroli, D., van der Plas, G., Rucina, S., Verschuren, D., 2018. Determinants of savanna-fire dynamics in the eastern Lake Victoria catchment (western Kenya) during the last 1200 years. Quaternary International 488, 6780.CrossRefGoogle Scholar
Colombaroli, D., Vannière, B., Emmanuel, C., Magny, M., Tinner, W., 2008. Fire—vegetation interactions during the Mesolithic—Neolithic transition at Lago dell'Accesa, Tuscany, Italy. The Holocene 18(5), 679692.CrossRefGoogle Scholar
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F. and Krebs, P., 2009. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28(5–6), 555576.CrossRefGoogle Scholar
Cordeiro, R.C., Turcq, B., Moreira, L.S., Rodrigues, R.D.A.R., Simões Filho, F.F.L., Martins, G.S., Santos, A.B., Barbosa, M., da Conceição, M.C.G., de Carvalho Rodrigues, R., Evangelista, H., 2014. Palaeofires in Amazon: Interplay between land use change and palaeoclimatic events. Palaeogeography, Palaeoclimatology, Palaeoecology 415, 137151.CrossRefGoogle Scholar
Crompton, R.P., Mcaneney, K.J., Chen, K., Pielke, R.A. Jr, Haynes, K., 2010. Influence of location,population, and climate on building damage and fatalities due to Australian bushfire: 1925–2009. Climate, andSociety 2 (4), 300310.Google Scholar
D'Amour, C.B., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K.H., Haberl, H., Creutzig, F., Seto, K.C., 2017. Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences 114(34), 89398944.CrossRefGoogle Scholar
Daniau, A.L., Bartlein, P.J., Harrison, S.P., Prentice, I.C., Brewer, S., Friedlingstein, P., Harrison-Prentice, T.I., Inoue, J., Izumi, K., Marlon, J.R., Mooney, S., 2012. Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles 26(4).CrossRefGoogle Scholar
Daniau, A.L., Goñi, M.F.S., Martinez, P., Urrego, D.H., Bout-Roumazeilles, V., Desprat, S., Marlon, J.R., 2013. Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences 110(13), 50695073.CrossRefGoogle ScholarPubMed
Daniau, A.L., Harrison, S.P. and Bartlein, P.J., 2010. Fire regimes during the Last Glacial. Quaternary Science Reviews, 29(21–22), pp.29182930.CrossRefGoogle Scholar
D'Anjou, R.M., Bradley, R.S., Balascio, N.L., Finkelstein, D.B., 2012. Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. Proceedings of the National Academy of Sciences of the United States of America 109, 20332–7.CrossRefGoogle ScholarPubMed
Davis, B.A., Stevenson, A.C., 2007. The 8.2 ka event and Early–Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain. Quaternary Science Reviews 26(13-14), 16951712.CrossRefGoogle Scholar
Delcourt, P.A., Delcourt, H.R., Ison, C.R., Sharp, W.E., Gremillion, K.J., 1998. Prehistoric human use of fire, the eastern agricultural complex, and Appalachian oak-chestnut forests: paleoecology of Cliff Palace Pond, Kentucky. American Antiquity 63(2), 263278.CrossRefGoogle Scholar
Dodson, J.R., Robinson, M., Tardy, C., 2005. Two Fine Resolution Pliocene Charcoal Records and their bearing on pre-human fire frequency in southwestern Australia. Austral Ecology 30: 592599.CrossRefGoogle Scholar
Doerr, S.H. and Santín, C., 2016. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), p.20150345.CrossRefGoogle Scholar
Donat, M.G., Alexander, L.V., 2012. The shifting probability distribution of global daytime and night-time temperatures. Geophysical Research Letters 39(14).CrossRefGoogle Scholar
Eden, J.M., Krikken, F., Drobyshev, I., 2020. An empirical prediction approach for seasonal fire risk in the boreal forests. International Journal of Climatology 40 (5), 27322744.CrossRefGoogle Scholar
Elassar, A., 2019. Amazon deforestation rate hits highest level in over a decade. CNN., November 19, 2019). https://www.cnn.com/2019/11/19/americas/brazil-deforestation-amazon-2019-trnd/index.html.Google Scholar
Ellicott, E., Vermote, E., Giglio, L., Roberts, G., 2009. Estimating biomass consumed from fire using MODIS FRE. Geophysical Research Letters 36(13).CrossRefGoogle Scholar
Feurdean, A. and Vasiliev, I., 2019. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Scientific reports, 9(1), 17.CrossRefGoogle Scholar
Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M., O'Hara, R.B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J., Hickler, T., 2017. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quaternary Science Reviews 169, 378390.CrossRefGoogle Scholar
Finsinger, W., Tinner, W., 2007. Pollen and plant macrofossils at Lac de Fully (2135 m asl): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. The Holocene 17(8), 11191127.CrossRefGoogle Scholar
Fischer, H., Meissner, K.J., Mix, A.C., Abram, N.J., Austermann, J., Brovkin, V., Capron, E., Colombaroli, D., Daniau, A-L., Dyez, K.A., Felis, T., Finkelstein, S.A., Jaccard, S.L., McClymont, E.L., Rovere, A., Sutter, J., Wolff, E.W., Affolter, S., Bakker, P., Ballesteros-Cánovas, J.A., Barbante, C., Caley, T., Carlson, A.E., Churakova, O., Cortese, G., Cumming, B.F., Davis, B.A.S., Vernal, A-D., Emile-Geay, J., Fritz, S.C., Gierz, P., Gottschalk, J., Holloway, M.D., Joos, R., Kucera, M., Loutre, M-F., Lunt, D.J., Marcisz, K., Marlon, J.R., Martinez, P., Masson-Delmotte, V., Nehrbass-Ahles, C., Otto-Bliesner, B., Raible, C.C., Risebrobakken, B., Sánchez Goñi, M.F., Saleem Arrigo, J., Sarnthein, M., Stocker, T.F., Velasquez Alvárez, P.A., Tinner, W., Vogel, H., Wanner, H., Yan, Q., Yu, Z., Ziegler, M., Zhou, L., 2018. Paleoclimate constraints on a future warmer world. Nature Geoscience 1.Google Scholar
Fischer, H., Schüpbach, S., Gfeller, G., Bigler, M., Röthlisberger, R., Erhardt, T., Stocker, T.F., Mulvaney, R. and Wolff, E.W., 2015. Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nature geoscience, 8(9), 723727.CrossRefGoogle Scholar
Foster, D. R., 2002. Thoreau's country: a historical-ecological perspective to conservation in the New England landscape. J. Biogeogrsphy 29, 15371555.CrossRefGoogle Scholar
Fusco, E.J., Finn, J.T., Balch, J.K., Nagy, R.C., Bradley, B.A., 2019. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proceedings of the National Academy of Sciences 116(47), 2359423599.CrossRefGoogle ScholarPubMed
Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., Lampin, C., 2013. A review of the main driving factors of forest fire ignition over Europe. Environmental Management 51(3), 651662.CrossRefGoogle ScholarPubMed
Gavin, D. G., Hallett, D., Hu, F. S., Lertzman, K., Prichard, S. J., Brown, K.J., Lynch, J. A., Bartlein, P., Peterson, D. L., 2007. Forest fire and climate change: Insights from sediment charcoal records. Frontiers in Ecology and Environment 5, 499506.CrossRefGoogle Scholar
Geneva, R., 2019. Arctic wildfires emitted as much CO2 in June as Sweden does in a year. Retrieved April 12, 2020, from https://www.theguardian.com/world/2019/jul/12/arctic-wildfires-c02-carbon-emissions-same-sweden.Google Scholar
Giglio, L., van der Werf, G.R., Randerson, J.T., Collatz, G.J. and Kasibhatla, P., 2006. Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics 6, pp.957974.CrossRefGoogle Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., Robinson, G.S., 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326(5956), 11001103.CrossRefGoogle ScholarPubMed
Girardin, M.P., Bergeron, Y., Tardif, J.C., Gauthier, S., Flannigan, M.D. and Mudelsee, M., 2006. A 229-year dendroclimatic-inferred record of forest fire activity for the Boreal Shield of Canada. International Journal of Wildland Fire, 15(3), 375388.CrossRefGoogle Scholar
Glasspool, I.J., Edwards, D., Axe, L., 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381383.CrossRefGoogle Scholar
Goede, A., Mc Dermott, F., Hawkesworth, C., Webb, J., Finlayson, B., 1996. Evidence of Younger Dryas and Neoglacial cooling in a late quaternary palaeotemperature record from a speleothem in eastern Victoria, Australia. Journal of Quaternary Science 11(1):17.3.0.CO;2-2>CrossRefGoogle Scholar
Grieman, M.M., Aydin, M., Isaksson, E., Schwikowski, M., Saltzman, E.S., 2018. Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning. Climate of the Past 14 (5), 637651.CrossRefGoogle Scholar
Guo, F., Innes, J.L., Wang, G., Ma, X., Sun, L., Hu, H., Su, Z., 2015. Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. Journal of Plant Ecology 8(5), 480490.CrossRefGoogle Scholar
Guyette, R.P., Muzika, R.M., Dey, D.C., 2002. Dynamics of an anthropogenic fire regime. Ecosystems 5(5), 472486.Google Scholar
Guyette, R.P., Spetich, M.A., Stambaugh, M.C., 2006. Historic fire regime dynamics and forcing factors in the Boston Mountains, Arkansas, USA. Forest Ecology and Management 234:293304.CrossRefGoogle Scholar
Guyette, R.P., Stambaugh, M.C., Dey, D.C. and Muzika, R.M., 2012. Predicting fire frequency with chemistry and climate. Ecosystems, 15(2), 322335.CrossRefGoogle Scholar
Haberle, S.G., Bennett, K.D., 2004. Postglacial formation and dynamics of North Patagonian rainforest in the Chonos Archipelago, Southern Chile. Quaternary Science Reviews 23(23–24), 24332452.CrossRefGoogle Scholar
Haberle, S.G., David, B., 2004. Climates of change: human dimensions of Holocene environmental change in low latitudes of the PEPII transect. Quaternary International 118e119, 165e179.Google Scholar
Haberle, S.G., Hope, G.S., Defretes, Y., 1991. Environmental change in the Baliem Valley, montane Irian Jaya, Republic of Indonesia. Journal of Biogeography 18, 25e 40.CrossRefGoogle Scholar
Han, Y.M., Marlon, J.R., Cao, J.J., Jin, Z.D., An, Z.S., 2012. Synchronous variations in soot, char and climate in Asia. Global Biogeochemical Cycles 26(4) DOI: 10.1029/2011GB004197.Google Scholar
Hao, Y., Han, Y., An, Z., Burr, G.S., 2020. Climatic control of orbital time-scale wildfire occurrences since the late MIS 3 at Qinghai Lake, monsoon marginal zone. Quaternary International. https://doi.org/10.1016/j.quaint.2020.03.002.CrossRefGoogle Scholar
Harley, G.L., Baisan, C.H., Brown, P.M., Falk, D.A., Flatley, W.T., Grissino-Mayer, H.D., Hessl, A., Heyerdahl, E.K., Kaye, M.W., Lafon, C.W., Margolis, E.Q., 2018. Advancing dendrochronological studies of fire in the United States. Fire 1(1), 11.CrossRefGoogle Scholar
Harrison, S.P., Marlon, J.R., & Bartlein, P.J., 2010. Fire in the Earth system. In Changing climates, earth systems and society (pp. 2148). Springer, Dordrecht.CrossRefGoogle Scholar
Herring, S.C., Hoell, A., Hoerling, M.P., Kossin, J.P., Schreck, C.J. III, Stott, P.A., 2016. Explaining extreme events of 2015 from a climate perspective. Bulletin of the American Meteorological Society 97(12), S1S145.Google Scholar
Hessl, A.E., Brown, P., Byambasuren, O., Cockrell, S., Leland, C., Cook, E., Suran, , B., 2016. Fire and climate in Mongolia (1532–2010 common era). Geophysical Research Letters 43(12), 65196527.CrossRefGoogle Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79(2), 201219.CrossRefGoogle Scholar
Higuera, P.E., Gavin, D.G., Bartlein, P.J., Hallett, D.J., 2011. Peak detection in sediment–charcoal records: impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire 19(8), 9961014.CrossRefGoogle Scholar
Hirota, M., Holmgren, M., Van Nes, E.H., Scheffer, M., 2011. Global resilience of tropical forest and savanna to critical transitions. Science 334(6053), 232235.CrossRefGoogle ScholarPubMed
Holz, A., Paritsis, J., Mundo, I.A., Veblen, T.T., Kitzberger, T., Williamson, G.J., Aráoz, E., Bustos-Schindler, C., González, M.E., Grau, H.R., Quezada, J.M., 2017. Southern Annular Mode drives multicentury wildfire activity in southern South America. Proceedings of the National Academy of Sciences 114(36), 95529557.CrossRefGoogle ScholarPubMed
Holz, A., Wood, S.W., Ward, C., Veblen, T.T. and Bowman, D.M., 2020. Population collapse and retreat to fire refugia of the Tasmanian endemic conifer Athrotaxis selaginoides following the transition from Aboriginal to European fire management. Global Change Biology, 26(5), 31083121.CrossRefGoogle ScholarPubMed
Hope, G., Stevenson, J., Southern, W., 2009. Vegetation histories from the Fijian Islands: alternative records of human impact. In: Clark, G., Anderson, A. (Eds.), The Early Prehistory of Fiji, 63e86. Terra Australis.Google Scholar
Horn, S.P., Orvis, K.H., Kennedy, L.M., Clark, G.M., 2000. Prehistoric fires in the highlands of the Dominican Republic: evidence from charcoal in soils and sediments. Caribbean Journal of Science 36(1/2), 1018.Google Scholar
Howe, P.D., Marlon, J.R., Mildenberger, M., Shield, B.S., 2019. How will climate change shape climate opinion? Environmental Research Letters 14(11), 113001.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B., Gavin, D.G., Higuera, P.E., Lynch, J.A., Rupp, T.S., Tinner, W., 2006. How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change 11(4), 829846.CrossRefGoogle Scholar
Hutchinson, T.F., Stambaugh, M.C., Marschall, J.M. and Guyette, R.P., 2019. Historical fire in the Appalachian Plateau of Ohio and Kentucky, USA, from remnant yellow pines. Fire Ecology, 15(1), 33.CrossRefGoogle Scholar
Iglesias, V., Whitlock, C., Markgraf, V., Bianchi, M.M., 2014. Climate-vegetation-fire linkages at local to regional scales along the Patagonian forest/steppe ecotone (41 - 43°S). Quaternary Science Reviews 94: 120135.CrossRefGoogle Scholar
Inoue, J., Okunaka, R., Kawano, T., 2016. The relationship between past vegetation type and fire frequency in western Japan inferred from phytolith and charcoal records in cumulative soils. Quaternary International 397, 513522.CrossRefGoogle Scholar
Jacobson, M.Z., 2014. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Journal of Geophysical Research: Atmospheres 119(14), 89809002.Google Scholar
Jager, H.I., Coutant, C.C. Knitting while Australia burns. Nature Climate Change 10, 170, 2020. https://doi.org/10.1038/s41558-020-0710-7.CrossRefGoogle Scholar
Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J., Bowman, D.M., 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications 6(1), 111.CrossRefGoogle ScholarPubMed
Jones, M.D., Bowles, M.L., 2016. Eastern redcedar dendrochronology links hill prairie decline with decoupling from climatic control of fire regime and reduced fire frequency. The Journal of the Torrey Botanical Society 143(3), 239253.CrossRefGoogle Scholar
Pielke, R.A. Jr, Landsea, C.W., 1998. Normalized hurricane damages in the United States: 1925–95. Weather and Forecasting 13(3), 621631.2.0.CO;2>CrossRefGoogle Scholar
Kaniewski, D., Paulissen, E., De Laet, V., Waelkens, M., 2008. Late Holocene fire impact and postfire regeneration from the Bereket basin. Quaternary Research 70 (2), 228239.CrossRefGoogle Scholar
Karkanas, P., Shahack-Gross, R., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., Gopher, A., Stiner, M.C., 2007. Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-formation processes at Qesem Cave, Israel. Journal of Human Evolution 53(2), 197212.CrossRefGoogle ScholarPubMed
Keeley, J.E., Rundel, P.W., 2005. Fire and the Miocene expansion of C-4 grasslands. Ecological Letters 8:683690.CrossRefGoogle Scholar
Kelly, R., Chipman, M.L., Higuera, P.E., Stefanova, I., Brubaker, L.B., Hu, F.S., 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences 110(32), 1305513060.CrossRefGoogle ScholarPubMed
Kelly, R., Genet, H., McGuire, A.D., Hu, F.S., 2016. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests. Nature Climate Change 6(1), 7982.CrossRefGoogle Scholar
Kirchmeier-Young, M.C., Gillett, N.P., Zwiers, F.W., Cannon, A.J., Anslow, F.S., 2019. Attribution of the Influence of Human-Induced Climate Change on an Extreme Fire Season. Earth's Future 7(1), 210.Google Scholar
Kloster, S., Mahowald, N.M., Randerson, J.T., Lawrence, P.J., 2012. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 9(1), 509525.CrossRefGoogle Scholar
Knorr, W., Arneth, A. & Jiang, L., 2016. Demographic controls of future global fire risk. Nature Climate Change 6, 781785.CrossRefGoogle Scholar
Knorr, W., Kaminski, T., Arneth, A., Weber, U., 2014. Impact of human population density on fire frequency at the global scale. Biogeosciences 11(4), 10851102. doi:10.5194/bg-11-1085-2014.CrossRefGoogle Scholar
Kröpelin, S., Verschuren, D., Lézine, A.M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.P., Fagot, M., Rumes, B., Russell, J.M., Darius, F., 2008. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320(5877), 765768.CrossRefGoogle ScholarPubMed
Lee, T.M., Markowitz, E.M., Howe, P.D., Ko, C.Y., Leiserowitz, A.A., 2015. Predictors of public climate change awareness and risk perception around the world. Nature Climate Change 5(11), 10141020.CrossRefGoogle Scholar
Legrand, M., Mcconnell, J., Fischer, H., Wolff, E.W., Preunkert, S., Arienzo, M., Chellman, N., et al. , 2016. Boreal fire records in Northern Hemisphere ice cores: a review. Climate of the Past 12 (10), 20332059.CrossRefGoogle Scholar
Leiserowitz, A, Maibach, E, Rosenthal, S, Kotcher, J, Bergquist, P, Gustafson, A, Ballew, M, et al. , 2019. Politics & Global Warming, November 2019. Yale University and George Mason University. Yale Program on Climate Change Communication, New Haven, CT.Google Scholar
Leiserowitz, A., Maibach, E., Roser-Renouf, C., Feinberg, G., Rosenthal, S., 2015. Climate change in the American mind: March, 2015. Yale University and George Mason University. New Haven, CT: Yale Project on Climate Change Communication.Google Scholar
Leiserowitz, A., Smith, N., Marlon, J.R., 2010. Americans' Knowledge of Climate Change. Yale University. New Haven, CT: Yale Project on Climate Change Communication. http://environment.yale.edu/climate/files/ClimateChangeKnowledge2010.pdf.Google Scholar
Lentile, L.B., Morgan, P., Hudak, A.T., Bobbitt, M.J., Lewis, S.A., Smith, A.M., Robichaud, P.R., 2007. Post-fire burn severity and vegetation response following eight large wildfires across the western United States. Fire Ecology 3(1), 91108.CrossRefGoogle Scholar
Leunda, M., Gil-Romera, G., Daniau, A.L., Benito, B.M., González-Sampériz, P., 2020. Holocene fire and vegetation dynamics in the Central Pyrenees (Spain). Catena 188, 104411.CrossRefGoogle Scholar
Leys, B., Marlon, J.R., Umbanhowar, C., Vanniere, B., 2018. Global fire history of grassland biomes. Ecology and Evolution 8 (17), 88318852.CrossRefGoogle ScholarPubMed
Linstädter, A., Zielhofer, C., 2010. Regional fire history shows abrupt responses of Mediterranean ecosystems to centennial-scale climate change (Olea–Pistacia woodlands, NE Morocco). Journal of Arid Environments 74(1), 101110.CrossRefGoogle Scholar
Long, C.J., Whitlock, C., Bartlein, P.J. and Millspaugh, S.H., 1998. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forest Research, 28(5), 774787.CrossRefGoogle Scholar
Lynch, A.H., Beringer, J., Kershaw, P., Marshall, A., Mooney, S., Tapper, N., Turney, C., Van Der Kaars, S., 2007. Using the paleorecord to evaluate climate and fire interactions in Australia. Annual Review of Earth and Planetary Sciences 35, 215239.CrossRefGoogle Scholar
Lynch, E.A., Calcote, R., Hotchkiss, S., 2006. Late-Holocene vegetation and fire history from Ferry Lake, northwestern Wisconsin, USA. The Holocene 16(4), 495504.CrossRefGoogle Scholar
Lynch, J.A., Clark, J.S. and Stocks, B.J., 2004. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Canadian Journal of Forest Research, 34(8), 16421656.CrossRefGoogle Scholar
Mann, D.H., Groves, P., Kunz, M.L., Reanier, R.E., Gaglioti, B.V., 2013. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quaternary Science Reviews 70, 91108.CrossRefGoogle Scholar
Marchant, R., Richer, S., Boles, O., Capitani, C., Courtney-Mustaphi, C.J., Lane, P., Prendergast, M.E., Stump, D., De Cort, G., Kaplan, J.O., Phelps, L., 2018. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth-Science Reviews 178, 322378.CrossRefGoogle Scholar
Marlon, J., Bartlein, P., Carcaillet, C., Gavin, D.G., Harrison, S.P., Higuera, P.E., Joos, F., Power, M.J., Prentice, C.I., 2008, Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience 1:697701.CrossRefGoogle Scholar
Marlon, J.R., Bartlein, P.J., Daniau, A.L., Harrison, S.P., Maezumi, S.Y., Power, M.J., Tinner, W., Vanniére, B., 2013. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews 65, 525.CrossRefGoogle Scholar
Marlon, J.R., Bartlein, P.J., Gavin, D.G., Long, C.J., Anderson, R.S., Briles, C.E., Brown, K.J., Colombaroli, D., Hallett, D.J., Power, M.J., Scharf, E.A., 2012. Long-term perspective on wildfires in the western USA. Proceedings of the National Academy of Sciences 109(9), E535E543.CrossRefGoogle ScholarPubMed
Marlon, J.R., Bartlein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.J., Anderson, R.S., Briles, C., Brunelle, A., 2009. Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences 106(8), 25192524.CrossRefGoogle ScholarPubMed
Marlon, J.R., Cheskis, A., 2017. Wildfires and climate are related – are Americans connecting the dots? Yale Project on Climate Change Communication. https://climatecommunication.yale.edu/news-events/connecting-wildfires-with-climate/.Google Scholar
Marlon, J.R., Kelly, R., Daniau, A.L., Vannière, B., Power, M.J., Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T. and Feurdean, A., 2016. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons. Biogeosciences, 13, 32253244.CrossRefGoogle Scholar
Marlon, J.R., Pederson, N., Nolan, C., Goring, S., Shuman, B., Robertson, A., Booth, R., Bartlein, P.J., Berke, M.A., Clifford, M., Cook, E., 2017. Climatic history of the northeastern United States during the past 3000 years, Climate of the Past 13, 13551379.CrossRefGoogle Scholar
Marynowski, L., Simoneit, B.R., 2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios 24 (12), 785798.CrossRefGoogle Scholar
Mazarzhanova, K., Kopabayeva, A., Kose, N., Akkemik, Ü., 2017. The first forest fire history of the Burabai Region (Kazakhstan) from tree rings of Pinus sylvestris. Turkish Journal of Agriculture and Forestry 41(3), 165174.CrossRefGoogle Scholar
Mcconnell, J.R., Edwards, R., Kok, G.L., Flanner, M.G., Zender, C.S., Saltzman, E.S., Banta, J.R., et al. , 2007. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317 (5843), 13811384.CrossRefGoogle ScholarPubMed
McWethy, D.B., Whitlock, C., Wilmshurst, J.M., McGlone, M.S., Fromont, M., Li, X., Dieffenbacher-Krall, A., Hobbs, W.O., Fritz, S.C., Cook, E.R., 2010. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proceedings of the National Academy of Sciences 107(50), 2134321348.CrossRefGoogle ScholarPubMed
Miao, Y., Fang, X., Song, C., Yan, X., Zhang, P., Meng, Q., Li, F., Wu, F., Yang, S., Kang, S., Wang, Y., 2016. Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records. Quaternary Science Reviews 139, 5366.CrossRefGoogle Scholar
Miller, J.E., Damschen, E.I., Ratajczak, Z., Özdoğan, M., 2017. Holding the line: three decades of prescribed fires halt but do not reverse woody encroachment in grasslands. Landscape Ecology 32(12), 22972310.CrossRefGoogle Scholar
Millspaugh, S.H., Whitlock, C., Bartlein, P.J., 2000. Variations in fire frequency and climate over the past 17 000 yr in central Yellowstone National Park. Geology 28(3), 211214.2.0.CO;2>CrossRefGoogle Scholar
Mooney, S.D., Harrison, S.P., Bartlein, P.J., Daniau, A.L., Stevenson, J., Brownlie, K.C., Buckman, S., Cupper, M., Luly, J., Black, M. and Colhoun, E., 2011. Late Quaternary fire regimes of Australasia. Quaternary Science Reviews, 30(1–2), 2846.CrossRefGoogle Scholar
Moritz, M.A., Batllori, E., Bradstock, R.A., Gill, A.M., Handmer, J., Hessburg, P.F., Leonard, J., McCaffrey, S., Odion, D.C., Schoennagel, T., Syphard, A.D., 2014. Learning to coexist with wildfire. Nature 515(7525), 5866.CrossRefGoogle ScholarPubMed
Moritz, M.A., Hessburg, P.F., Povak, N.A., 2011. Native fire regimes and landscape resilience. In The landscape ecology of fire (51–86). Springer, Dordrecht.Google Scholar
Morrison, K.D., 1994), Monitoring regional fire history through size-specific analysis of microscopic charcoal: The last 600 years in south India. Journal of Archaeological Science 21, 675685.CrossRefGoogle Scholar
Mouillot, F. and Field, C.B., 2005. Fire history and the global carbon budget: a 1× 1 fire history reconstruction for the 20th century. Global Change Biology, 11(3), 398420.CrossRefGoogle Scholar
Mundo, I.A., Holz, A., González, M.E., Paritsis, J., 2017. Fire History and Fire Regimes Shifts in Patagonian Temperate Forests. In Dendroecology (211–229). Springer, Cham.Google Scholar
Mutch, R.W., Rogers, M.J., Stephens, S.L., Gill, A.M., 2011. Protecting lives and property in the wildland–urban interface: communities in Montana and southern California adopt Australian paradigm. Fire Technology 47(2), 357377.CrossRefGoogle Scholar
Neumann, K., Fahmy, A., Lespez, L., Ballouche, A. and Huysecom, E., 2009. The Early Holocene palaeoenvironment of Ounjougou (Mali): phytoliths in a multiproxy context. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1–4), 87106.CrossRefGoogle Scholar
Nolan, C.J., 2019. Using co-located lake and bog records to improve inferences on Late Quaternary climate and ecology (Doctoral dissertation, The University of Arizona).Google Scholar
Oddi, F.J. and Ghermandi, L., 2016. Fire regime from 1973 to 2011 in north-western Patagonian grasslands. International Journal of Wildland Fire, 25(9), 922932.CrossRefGoogle Scholar
Ohlson, M., Brown, K.J., Birks, H.J.B., Grytnes, J.A., Hörnberg, G., Niklasson, M., Seppä, H., Bradshaw, R.H., 2011. Invasion of Norway spruce diversifies the fire regime in boreal European forests. Journal of Ecology 99(2), 395403.Google Scholar
Osmont, D., Sigl, M., Schwikowski, M., 2019. A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia. Climate of the Past 15(2), 579592.CrossRefGoogle Scholar
Oswald, W.W., Foster, D.R., Shuman, B.N., Chilton, E.S., Doucette, D.L., Duranleau, D.L., 2020. Conservation implications of limited Native American impacts in pre-contact New England. Nature Sustainability 16.Google Scholar
Partain, J.L. Jr, Alden, S., Strader, H., Bhatt, U.S., Bieniek, P.A., Brettschneider, B.R., Walsh, J.E., Lader, R.T., Olsson, P.Q., Rupp, T.S., Thoman, R.L. Jr, 2016. An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015. Bulletin of the American Meteorological Society 97(12), S14S18.CrossRefGoogle Scholar
Pausas, J.G., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic change, 63(3), pp.337350.CrossRefGoogle Scholar
Pausas, J.G., Fernández-Muñoz, S., 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110(1–2), 215226.CrossRefGoogle Scholar
Pausas, J.G., Keeley, JE, 2009. A burning story: the role of fire in the history of life. Bioscience 59:593601.CrossRefGoogle Scholar
Pausas, J.G., Ribeiro, E., 2013. The global fire–productivity relationship. Global Ecology and Biogeography 22(6), 728736.CrossRefGoogle Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., Bradshaw, R.H., Carcaillet, C., Cordova, C., Mooney, S., 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30(7–8), 887907.CrossRefGoogle Scholar
Power, M.J., Marlon, J.R., Bartlein, P.J. and Harrison, S.P., 2010. Fire history and the Global Charcoal Database: a new tool for hypothesis testing and data exploration. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1–2), 5259.CrossRefGoogle Scholar
Power, M.J., Mayle, F.E., Bartlein, P.J., Marlon, J.R., Anderson, R.S., Behling, H., Brown, K.J., Carcaillet, C., Colombaroli, D., Gavin, D.G. and Hallett, D.J., 2013. Climatic control of the biomass-burning decline in the Americas after AD 1500. The Holocene, 23(1), 313.CrossRefGoogle Scholar
Power, M.J., Whitlock, C. and Bartlein, P.J., 2011. Postglacial fire, vegetation, and climate history across an elevational gradient in the Northern Rocky Mountains, USA and Canada. Quaternary Science Reviews, 30(19–20), 25202533.CrossRefGoogle Scholar
Pyne, S.J., 1997. World fire: the culture of fire on earth. University of Washington press.Google Scholar
Rabin, S.S., Melton, J.R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Li, F., Mangeon, S., Yue, C., Arora, V.K., Hickler, T., 2017. The fire modeling intercomparison project (FireMIP), phase 1: experimental and analytical protocols. Geoscientific Model Development 20, 11751197.CrossRefGoogle Scholar
Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R. and Chapin, F.S., 2006. The impact of boreal forest fire on climate warming. Science 314(5802), 11301132.CrossRefGoogle ScholarPubMed
Reynolds, R.V., Pierson, A.H., 1941. The saw timber resource of the United States,1630–1930. Forest Survey Release 53 (USDA Forest Service, Washington, DC).Google Scholar
Roberts, N., Fyfe, R.M., Woodbridge, J., Gaillard, M.J., Davis, B.A., Kaplan, J.O., Marquer, L., Mazier, F., Nielsen, A.B., Sugita, S., Trondman, A.K., 2018. Europe's lost forests: a pollen-based synthesis for the last 11,000 years. Scientific Reports 8(1), 18.CrossRefGoogle ScholarPubMed
Roebroeks, W., Villa, P., 2011. On the earliest evidence for habitual use of fire in Europe. Proceedings of the National Academy of Sciences 108(13), 52095214.CrossRefGoogle ScholarPubMed
Rogers, J., Hope, G.S., 2006. The Holocene infill of Nursery swamp, a large sedgeland in the Australian Capital Territory. Unpublished Report to Environment ACT.Google Scholar
Rucina, S.M., Muiruri, V.M., Kinyanjui, R.N., McGuiness, K. and Marchant, R., 2009. Late Quaternary vegetation and fire dynamics on Mount Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 283(1–2), 114.CrossRefGoogle Scholar
Sanderson, B.M., Fisher, R.A., 2020. A fiery wake-up call for climate science. Nature Climate Change. 10 175177. https://doi.org/10.1038/s41558-020-0707-2.CrossRefGoogle Scholar
Sasaki, N., Takahara, H., 2011. Late Holocene human impact on the vegetation around Mizorogaike Pond in northern Kyoto Basin, Japan: a comparison of pollen and charcoal records with archaeological and historical data. Journal of Archaeological Science 38(6), 11991208.CrossRefGoogle Scholar
Schoennagel, T., Balch, J., Brenkert-Smith, H., Dennison, P., Harvey, B., Krawchuk, M., Morgan, P., Moritz, M., Rasker, R., Turner, G.G., Whitlock, C., 2017. Adapt to more wildfires in western North American forests as climate changes. Proceedings of the National Academy of Sciences 114, 45824590.CrossRefGoogle ScholarPubMed
Scott, A.C., Bowman, D.M., Bond, W.J., Pyne, S.J. and Alexander, M.E., 2013. Fire on earth: an introduction. John Wiley & Sons.Google Scholar
Scott, A.C., Glasspool, I.J., 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences 103: 1086110865.CrossRefGoogle ScholarPubMed
Scott, A.C., Jones, T.P., 1994. The nature and influence of fire in Carboniferous ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 106(1–4), 91112.CrossRefGoogle Scholar
Sippel, S., Meinshausen, N., Fischer, E.M., Székely, E., Knutti, R., 2020. Climate change now detectable from any single day of weather at global scale. Nature Climate Change 10(1), 3541.CrossRefGoogle Scholar
Stahle, L.N., Chin, H., Haberle, S., Whitlock, C., 2017. Late-glacial and Holocene records of fire and vegetation from Cradle Mountain National Park, Tasmania, Australia. Quaternary Science Reviews 177, 5777.CrossRefGoogle Scholar
Stambaugh, M.C., Marschall, J.M., Abadir, E. R., Jones, B. C., Brose, P. H., Dey, D. C., Guyette, R. P., 2018. Wave of fire: an anthropogenic signal in historical fire regimes across central Pennsylvania, USA. Ecosphere 9(5):e02222. 10.1002/ecs2.2222.CrossRefGoogle Scholar
Stamou, Z., Xystrakis, F. and Koutsias, N., 2016. The role of fire as a long-term landscape modifier: Evidence from long-term fire observations (1922–2000) in Greece. Applied Geography, 74, 4755.CrossRefGoogle Scholar
Stephens, S.L., Martin, R.E., Clinton, N.E., 2007. Prehistoric fire area and emissions from California's forests, woodlands, shrublands, and grasslands. Forest Ecology and Management 251(3): 205216.CrossRefGoogle Scholar
Swain, A.M., 1973. A History of Fire and Vegetation in Northeastern Minnesota as Recorded in Lake Sediments 1. Quaternary Research 3(3), 383396.CrossRefGoogle Scholar
Swetnam, T.W., Baisan, C.H., Caprio, A.C., Brown, P.M., Touchan, R., Anderson, R.S., Hallett, D.J., 2009. Multi-millennial fire history of the giant forest, Sequoia National Park, California, USA. Fire Ecology 5(3), 120150.CrossRefGoogle Scholar
Syphard, A.D., Keeley, J.E., 2015. Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire 24(1), 3747.CrossRefGoogle Scholar
Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T., Zimmermann, L. and Zweifel, R., 2006. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps-implications for fire history reconstruction. The Holocene, 16(2), 287292.CrossRefGoogle Scholar
Tinner, W., van Leeuwen, J.F., Colombaroli, D., Vescovi, E., van der Knaap, W.O., Henne, P.D., Pasta, S., D'Angelo, S., La Mantia, T., 2009. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quaternary Science Reviews 28(15–16), 14981510.CrossRefGoogle Scholar
Tolonen, M., 1978. Palaeoecology of annually laminated sediments in Lake Ahvenainen, S. Finland. I. Pollen and charcoal analyses and their relation to human impact. In Annales Botanici Fennici (177–208). Finnish Botanical Publishing Board.Google Scholar
Toney, J.L., Anderson, R.S., 2006. A postglacial palaeoecological record from the San Juan Mountains of Colorado USA: fire, climate and vegetation history. The Holocene 16(4), 505517.CrossRefGoogle Scholar
Trenberth, K.E., Fasullo, J.T., Shepherd, T.G., 2015. Attribution of climate extreme events. Nature Climate Change 5(8), 725730.CrossRefGoogle Scholar
Trouet, V., Taylor, A.H., Carleton, A.M., Skinner, C.N., 2009. Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theoretical and Applied Climatology 95(3–4), 349360.CrossRefGoogle Scholar
Turner, R., Roberts, N., Eastwood, W.J., Jenkins, E., Rosen, A., 2010. Fire, climate and the origins of agriculture: micro-charcoal records of biomass burning during the last glacial–interglacial transition in Southwest Asia. Journal of Quaternary Science 25(3), 371386.CrossRefGoogle Scholar
Vachula, R.S., Huang, Y., Longo, W.M., Dee, S.G., Daniels, W.C., Russell, J.M., 2019. Evidence of Ice Age humans in eastern Beringia suggests early migration to North America. Quaternary Science Reviews 205, 3544.CrossRefGoogle Scholar
Van Der Werf, G.R., Randerson, J.T., Collatz, G.J., Giglio, L., Kasibhatla, P.S., Arellano, A.F., Olsen, S.C. and Kasischke, E.S., 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 303(5654), pp.7376.CrossRefGoogle ScholarPubMed
van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S. and Arellano, A.F. Jr, 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6, 34233441.CrossRefGoogle Scholar
Van Marle, M.J., Kloster, S., Magi, B.I., Marlon, J.R., Daniau, A.L., Field, R.D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N.M., Knorr, W., 2017. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015). Geoscientific Model Development 10, 33293357.CrossRefGoogle Scholar
Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27(11–12), 11811196.CrossRefGoogle Scholar
Vannière, B., Power, M.J., Roberts, N., Tinner, W., Carrión, J., Magny, M., Bartlein, P., Colombaroli, D., Daniau, A.L., Finsinger, W. and Gil-Romera, G., 2011. Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). The Holocene, 21(1), 5373.CrossRefGoogle Scholar
Veblen, T.T., Kitzberger, T. and Donnegan, J., 2000. Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecological Applications, 10(4), pp.11781195.CrossRefGoogle Scholar
Veraverbeke, S., Rogers, B.M., Goulden, M.L., Jandt, R.R., Miller, C.E., Wiggins, E.B., Randerson, J.T., 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change 7(7), 529534.CrossRefGoogle Scholar
Walsh, M.K., Marlon, J.R., Goring, S.J., Brown, K.J., Gavin, D.G., 2015. A regional perspective on Holocene fire–climate–human interactions in the Pacific Northwest of North America. Annals of the Association of American Geographers 105(6), 11351157.CrossRefGoogle Scholar
Walsh, M.K., Pearl, C.A., Whitlock, C., Bartlein, P.J., Worona, M.A., 2010. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley. Quaternary Science Reviews 29(9–10), 10931106.CrossRefGoogle Scholar
Wang, S.S., Zhao, L., Yoon, J.H., Klotzbach, P., Gillies, R.R., 2018. Quantitative attribution of climate effects on Hurricane Harvey's extreme rainfall in Texas. Environmental Research Letters 13(5), 054014.CrossRefGoogle Scholar
Wang, X., Xiao, J., Cui, L. and Ding, Z., 2013. Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity. Quaternary Science Reviews, 59, pp.1829.CrossRefGoogle Scholar
Weber, E.U., 2006. Experience-based and description-based perceptions of long-term risk: Why global warming does not scare us (yet). Climatic Change 77 (1-2), 103120.CrossRefGoogle Scholar
Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313(5789), 940943.CrossRefGoogle Scholar
Whitlock, C., 1993. Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks: Ecological Monographs 63, 173198.Google Scholar
Whitlock, C., Bartlein, P.J., Briles, C., Brunelle, A., Long, C., Marlon, J., 2008. Long-term relations among fire, fuels, and climate in the northwestern U.S. based on lake-sediment studies. Journal of International Wildfire Research, 17, 7283.Google Scholar
Whitlock, C., Higuera, P.E, McWethy, D.M., Briles, C.E., 2010. The Open Ecology Journal 3: 623.CrossRefGoogle Scholar
Whitlock, C., Larsen, C., 2001. Charcoal as a fire proxy. In ‘Tracking environmental change using lake sediments. Vol. 3. Terrestrial, algal, and siliceous indicators’. (Eds Smol, JP, Birks, HJB, Last, WM) 1–23. Smol JP, Birks HJB, Last WM (Dordrecht), 7597.Google Scholar
Whitlock, C., McWethy, D.M, Tepley, A., Veblen, T.T., Holz, A., McGlone, M.S., Perry, G.L.W., Wilmshurst, J., Wood, S., 2015. BioScience 65, 151163. doi:10.1093/biosci/biu194.CrossRefGoogle Scholar
Wick, L., Lemcke, G. and Sturm, M., 2003. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene, 13(5), 665675.CrossRefGoogle Scholar
Williams, A.N., Mooney, S.D., Sisson, S.A., Marlon, J., 2015. Exploring the relationship between Aboriginal population indices and fire in Australia over the last 20,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 432, 4957.CrossRefGoogle Scholar
Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman-Moralez, J., Bishop, D.A., Balch, J.K., Lettenmaier, D.P., 2019, Observed impacts of anthropogenic climate change on wildfire in California. Earth's Future 7(8):892910, doi:101029/2019EF001210CrossRefGoogle Scholar
Wittenberg, A.T., 2009. Are historical records sufficient to constrain ENSO simulations?. Geophysical Research Letters 36(12).CrossRefGoogle Scholar
Wu, M., Knorr, W., Thonicke, K., Schurgers, G., Camia, A., Arneth, A., 2015. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models. Journal of Geophysical Research: Biogeosciences 120(11), 22562272.Google Scholar
Yan, M., Wan, M., He, X., Hou, X., Wang, J., 2016. First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 394408.CrossRefGoogle Scholar
Zhang, H., Zhang, Y., Kong, Z., Yang, Z., Li, Y. and Tarasov, P.E., 2015. Late Holocene climate change and anthropogenic activities in north Xinjiang: Evidence from a peatland archive, the Caotanhu wetland. The Holocene, 25(2), 323332.CrossRefGoogle Scholar
Zumbrunnen, T., Bugmann, H., Conedera, M., Bürgi, M., 2009. Linking forest fire regimes and climate—a historical analysis in a dry inner alpine valley. Ecosystems 12(1), 7386.CrossRefGoogle Scholar