Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T16:55:58.835Z Has data issue: false hasContentIssue false

Weakening climatic signal since mid-20th century in European larch tree-ring chronologies at different altitudes from the Adamello-Presanella Massif (Italian Alps)

Published online by Cambridge University Press:  20 January 2017

Anna Coppola*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Pisa, Italy
Giovanni Leonelli
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milan, Italy
Maria Cristina Salvatore
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Pisa, Italy
Manuela Pelfini
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milan, Italy
Carlo Baroni
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Pisa, Italy
*
*Corresponding author at: Department of Earth Sciences, University of Pisa, Via S. Maria 53, Pisa, Italy. E-mail address:[email protected], [email protected] (A. Coppola).

Abstract

Tree rings from temperature-limited environments are highly sensitive climate proxies, widely used to reconstruct past climate parameters for periods prior to the availability of instrumental data and to analyse the effect of recent global warming on tree growth. An analysis of the climatic signal in five high-elevation tree-ring width chronologies of European larch (Larix decidua Mill.) from the tops of five different glacial valleys in the Italian Central Alps revealed that they contain a strong summer-temperature signal and that tree-ring growth is especially influenced by June temperatures. However, a moving correlation function analysis revealed a recent loss of the June temperature signal in the tree-ring chronologies. This signal reduction primarily involves the two lowest-altitude chronologies. It is probable that the observed increasing importance of late-summer temperature for tree-ring growth over the past 50 yr is an effect of the lengthening growing season and of the variations in the climate/tree-ring relationship over time. All the chronologies considered, especially those at the highest altitudes, show an increasing negative influence of June precipitation on tree-ring growth. The climatic signal recorded in tree-ring chronologies from the Italian Central Alps varies over time and is also differentially influenced by climatic parameters according to site elevation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., Nieplova, E., (2007). HISTALP — historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology. 27, 146.CrossRefGoogle Scholar
Barber, V., Juday, G., Finney, B., (2000). Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress. Nature. 405, 668672.Google Scholar
Baroni, C., Carton, A., (1990). Variazioni oloceniche della Vedretta della Lobbia (Gruppo dell'Adamello, Alpi Centrali). Geografia Fisica e Dinamica Quaternaria. 13, 2 105119.Google Scholar
Baroni, C., Carton, A., (1987). Geomorfologia della Valle dell'Avio (Gruppo dell'Adamello) [Geomorphology of the Avio Valley]. Natura Bresciana. 23, 348.Google Scholar
Baroni, C., Carton, A., (1996). Geomorfologia dell'alta Val di Genova (Gruppo dell'Adamello Alpi Centrali). Geografia Fisica e Dinamica Quaternaria. 19, 317.Google Scholar
Baroni, C., Carton, A., Seppi, R., (2004). Distribution and behaviour of rock glaciers in the Adamello-Presanella Massif (Italian Alps). Permafrost and Periglacial Processes. 15, 243259.Google Scholar
Beniston, M., (2004). The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters. 31, 20222026.Google Scholar
Biondi, F., (1997). Evolutionary and moving response functions in dendroclimatology. Dendrochronologia. 15, 139150.Google Scholar
Biondi, F., Waikul, K., (2004). Dendroclim 2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences. 30, 303311.CrossRefGoogle Scholar
Briffa, K.R., Jones, P.D., Schweingruber, F.H., (1988a). Summer temperature patterns over Europe: a reconstruction from 1750 A.D. based on maximum latewood density indices of conifers. Quaternary Research. 30, 3652.Google Scholar
Briffa, K.R., Jones, P.D., Pilcher, J.R., Hughes, M.K., (1988b). Reconstructing summer temperatures in Northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arctic and Alpine Research. 20, 4 385394.Google Scholar
Briffa, K.R., Jones, P.D., Bartholin, T.S., Eckstein, D., Schweingruber, F.H., Karlen, W., Zetterberg, P., Eronen, M., (1992). Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics. 7, 111119.Google Scholar
Briffa, K.R., Schweingruber, F.H., Jones, P.D., Osborn, T.J., Harris, I.C., Shiyatov, S.G., Vaganov, E.A., Grudd, H., (1998a). Trees tell of past climates: but are they speaking less clearly today?. Philosophical Transactions of the Royal Society of London B. 353, 6573.CrossRefGoogle Scholar
Briffa, K.R., Schweingruber, F.H., Jones, P.D., Osborn, T.J., Shiyatov, S.G., Vaganov, E.A., (1998b). Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature. 391, 678682.CrossRefGoogle Scholar
Briffa, K.R., Osborn, T.J., Schweingruber, F.H., Jones, P.D., Shiyatov, S.G., Vaganov, E.A., (2002). Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. The Holocene. 12, 737757.Google Scholar
Briffa, K.R., Osborn, T.J., Schweingruber, F.H., (2004). Large scale temperature inferences from tree-rings: a review. Global and Planetary Change. 40, 1126.Google Scholar
Büntgen, U., Frank, D.C., Schmidhalter, M., Neuwirth, B., Seifert, M., Esper, J., (2006). Growth/climate response shift in a long subalpine spruce chronology. Trees-Structure and Function. 20, 1 99110.Google Scholar
Büntgen, U., Frank, D.C., Wilson, R., Carrer, M., Urbinati, C., Esper, J., (2008). Testing for tree-ring divergence in the European Alps. Global Change Biology. 14, 24432453.CrossRefGoogle Scholar
Carrer, M., Urbinati, C., (2006). Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua . New Phytologist. 1, 70 861872.Google Scholar
Carrer, M., Anfodillo, T., Urbinati, C., Carraro, V., (1998). High altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italian Alps. Beniston, M., Innes, J.L., The Impacts of Climate Variability on Forests, Lecture Notes in Earth Sciences, 74, Springer, Berlin Heidelberg New York, 171189.CrossRefGoogle Scholar
Cook, E.R., (1985). A time series analysis approach to tree-ring standardization. PhD thesis, University of Arizona, Arizona.Google Scholar
Cook, E.R., Briffa, K.R., (1990). A comparison of some tree-ring standardization methods. Cook, E.R., Kairiukstis, L.A., Methods of Dendrochronology, Kluwer, Dordrecht, 104123.Google Scholar
Cook, E.R., Holmes, R.L., (1984). Program ARSTAN User Manual: Laboratory of Tree Ring Research. University of Arizona, Tucson.Google Scholar
Esper, J., Cook, E.R., Schweingruber, F.H., (2002a). Reconstructing past temperature variability low-frequency signals in long tree-ring chronologies. Science. 295, 2250.Google Scholar
Esper, J., Cook, E.R., Schweingruber, F.H., Winiger, M., (2002b). 1300 years of climatic history for Western Central Asia inferred from tree-rings. The Holocene. 12, 267277.Google Scholar
Esper, J., Cook, E.R., Shiyatov, S.G., Mazepa, V.S., Wilson, R.J.S., Graybill, D.A., Funkhouser, G., (2003). Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends. Climate Dynamics. 8, 699706.Google Scholar
Ferguson, C.W., (1970). Concept and Techniques of Dendrochronology in Scientific Methods in Medieval Archaeology. Berger, Rainer, University of California Press.Google Scholar
Frank, D., Esper, J., (2005a). Temperature reconstructions and comparison with instrumental data from a tree-ring network for the European Alps. International Journal of Climatology. 25, 14371454.Google Scholar
Frank, D., Esper, J., (2005b). Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia. 22, 107121.Google Scholar
Fritts, H.C., (1976). Tree Rings and Climate. 567 pp.Academic Press, New York.Google Scholar
Grissino-Mayer, H.D., (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research. 57, 205221.Google Scholar
Holmes, R.L., (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin. 43, 6978.Google Scholar
Jacoby, G.C., D'Arrigo, R., ('Arrigo, 1989). Reconstructed northern hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Climatic Change. 14, 3959.Google Scholar
Jacoby, G.C., Lovelius, N.V., Shumilov, O.I., Raspopov, O.M., Karbainov, J.M., Frank, D.C., (2000). Long-term temperature trends and tree growth in the Taimyr region of northern Siberia. Quaternary Research. 53, 312318. .Google Scholar
Klein Tank, A.M.G., Können, G.P., ("nnen, 2003). Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. Journal of Climate. 16, 36653680.2.0.CO;2>CrossRefGoogle Scholar
Leonelli, G., Pelfini, M., (2008). Influence of climate and climate anomalies on Norway spruce tree-ring growth at different altitude and on glacier responses: examples from the Central Italian Alps. Geografiska Annaler. 90, A(1) 7586.CrossRefGoogle Scholar
Leonelli, G., Pelfini, M., Battipaglia, G., Cherubini, P., (2009). Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climatic Change. 96, 185201. .CrossRefGoogle Scholar
Leonelli, G., Pelfini, M., D'Arrigo, R., Haeberli, W., Cherubini, P., (2011). Non-stationary responses of tree-ring chronologies and glacier mass balance to climate in the European Alps. Arctic, Antarctic, and Alpine Research. 43, 1 5665.Google Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., Wanner, H., (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science. 303, 14991503.Google Scholar
Mann, M.E., Bradley, R.S., Hughes, M.K., (1998). Global scale temperature patterns and climate forcing over the past six centuries. Nature. 392, 779787.Google Scholar
Mann, M.E., Bradley, R.S., Hughes, M.K., (1999). Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters. 26, 759762.Google Scholar
Menzel, A., Fabian, P., (1999). Growing season extended in Europe. Nature. 397, 659.Google Scholar
Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavska, O., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Mage, F., Mestre, A., Nordli, Ø., Penuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A.J.H., Wielgolaski, F.-E., Zach, S., Zust, A., (2006). European phonological response to climate change matches the warming pattern. Global Change Biology. 12, 10 19691976.Google Scholar
Pelfini, M., Leonelli, G., Santilli, M., (2006). Climatic and environmental influences on mountain pine (Pinus montana Miller) growth in the Central Italian Alps. Arctic, Antarctic, and Alpine Research. 38, 4 614623.Google Scholar
Pilcher, J.R., (1990). Sample preparation, cross-dating and measurement. Cook, E.R., Kairiukstis, L., Methods of Dendrochronology: Applications in the Environmental Sciences, Kluwer, Dordrecht, 4051.Google Scholar
Pilchler, P., Oberhuber, W., (2007). Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. Forest Ecology and Management. 242, 688699.CrossRefGoogle Scholar
Ranzi, R., Grossi, G., Gitti, A., Taschner, S., (2010). Energy and mass balance of the Mandrone Glacier (Adamello, Central Alps). Geografia Fisica e Dinamica Quaternaria. 33, 4560.Google Scholar
Rinn, F., (2005). TSAPWin — Time Series Analysis and Presentation for Dendrochronology and Related Applications, Version 0.53, User Reference. Heidelberg, 91 pp.Google Scholar
Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A., Appenzeller, C., (2004). The role of increasing temperature variability in European summer heatwaves. Nature. 427, 332336.Google Scholar
Schweingruber, F.H., (1988). Tree Rings. Basics and Applications of Dendrochronology. Kluwer, Dordrecht, 276 pp.Google Scholar
Sparks, T.H., Menzel, A., (2002). Observed changes in the seasons: an overview. International Journal of Climatology. 22, 17151725.Google Scholar
Stokes, M.A., Smiley, T.L., (1968). An Introduction to Tree-Ring Dating. University of Chicago Press, Chicago, IL, 73 pp.Google Scholar
Treydte, K.S., Frank, D., Esper, J., (2007). Signal strength and climate calibration of a European tree-ring isotope network. Geophysical Research Letters. 34, 24 L24302.Google Scholar
Vaganov, E.A., Hughes, M.K., Kirdyanov, A.V., Schweingruber, F.H., Silkin, P.P., (1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature. 400, 149151.CrossRefGoogle Scholar
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, O., Hoegh-Guldberg, J.-M., Bairlein, F., (2002). Ecological responses to recent climate change. Nature. 416, 389395.Google Scholar
Wigley, T.M.L., Briffa, K.R., Jones, P.D., (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology. 23, 201213.2.0.CO;2>CrossRefGoogle Scholar
Wilson, R.J.S., Luckman, B.H., (2002). Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada. Dendrochronologia. 20, 257268.Google Scholar
Wilson, R.J.S., Luckman, B.H., (2003). Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in interior British Columbia, Canada. The Holocene. 13, 851861.Google Scholar
Wilson, R.J.S., Topham, J., (2004). Violins and climate. Theoretical and Applied Climatology. 77, 924. .Google Scholar