Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T01:51:58.818Z Has data issue: false hasContentIssue false

Timing, cause and consequences of mid-Holocene climate transition in the Arabian Sea

Published online by Cambridge University Press:  20 January 2017

Rajeev Saraswat*
Affiliation:
Geological Oceanography Division, National Institute of Oceanography, Goa, India
Dinesh Kumar Naik
Affiliation:
Geological Oceanography Division, National Institute of Oceanography, Goa, India
Rajiv Nigam
Affiliation:
Geological Oceanography Division, National Institute of Oceanography, Goa, India
Anuruddh Singh Gaur
Affiliation:
Geological Oceanography Division, National Institute of Oceanography, Goa, India
*
*Corresponding author. E-mail address:[email protected](R. Saraswat)

Abstract

We reconstruct centennial scale quantitative changes in surface seawater temperature (SST), evaporation-precipitation (from Mg/Ca and δ18O of surface dwelling planktic foraminifera), productivity (from relative abundance of Globigerina bulloides), carbon burial (from %CaCO3 and organic carbon [%Corg]) and dissolved oxygen at sediment-water interface, covering the entire Holocene, from a core collected from the eastern Arabian Sea. From the multi-proxy record, we define the timing, consequences and possible causes of the mid-Holocene climate transition (MHCT). A distinct shift in evaporation-precipitation (E-P) is observed at 6.4 ka, accompanied by a net cooling of SST. The shift in SST and E-P is synchronous with a change in surface productivity. A concurrent decrease is also noted in both the planktic foraminiferal abundance and coarse sediment fraction. A shift in carbon burial, as inferred from both the %CaCO3 and %Corg, coincides with a change in surface productivity. A simultaneous decrease in dissolved oxygen at the sediment-water interface, suggests that changes affected both the surface and subsurface water. A similar concomitant change is also observed in other cores from the Arabian Sea as well as terrestrial records, suggesting a widespread regional MHCT. The MHCT coincides with decreasing low-latitude summer insolation, perturbations in total solar intensity and an increase in atmospheric CO2.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, J.G., Leptoukh, G., 2007. Online analysis enhances use of NASA Earth science data. Eos Transaction AGU 88 14.CrossRefGoogle Scholar
Agnihotri, R., Bhattacharya, S.K., Sarin, M.M., Somayajulu, B.L.K., 2003. Changes in surface productivity and subsurface denitrification during the Holocene: a multiproxy study from the eastern Arabian Sea. Holocene 13, 701713.CrossRefGoogle Scholar
Agrawal, D.P., Kusumgar, , 1974. Prehistoric Chronology and Radiocarbon Dating in India (New Delhi).Google Scholar
Ahmad, S.M., Zheng, H., Raza, W., Zhou, B., Lone, M.A., Raza, T., Suseela, G., 2012. Glacial to Holocene changes in the surface and deep waters of the northeast Indian Ocean. Marine Geology 329-331, 1623.Google Scholar
Allchin, B., Allchin, R., 1988. The Rise of Civilization in India and Pakistan. Cambridge University Press, Cambridge.Google Scholar
Altabet, M.A., Higginson, M.J., Murray, D.W., 2002. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 . Nature 415, 159162.Google Scholar
Anand, P., Kroon, D., Singh, A.D., Ganeshram, R.S., Ganssen, G., Elderfield, H., 2008. Coupled sea surface temperatureeseawater δ18O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography 23, PA4207. http://dx.doi.org/10.1029/2007PA001564.Google Scholar
Anil Kumar, A., Rao, V.P., Patil, S.K., Kessarkar, P.M., Thamban, M., 2005. Rock magnetic records of the sediments of the eastern Arabian Sea: evidence for late Quaternary climatic change. Marine Geology 220, 5982.Google Scholar
Bellwood, P., 1996. The origins and spread of agriculture in the Indo-Pacific region: gradualism and diffusion or revaluations and colonization? In: Haris, D.R. (Ed.), The Origins and Spread of Agriculture and Pastoralism in Eurasia. UCL Press, London, pp. 465498.Google Scholar
Canfield, D.E., Raiswell, R., 1991. Carbonate precipitation and dissolution. In: Allison, P.A., Briggs, D.E.G. (Eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, pp. 411453.Google Scholar
Chauhan, O.S., 2003. Past 20,000-year history of Himalayan aridity: evidence from oxygen isotope records in the Bay of Bengal. Current Science 84, 9093.Google Scholar
Chauhan, O.S., Almeida, F., Suneethi, J., 2000. Influence of sedimentation on the geomorphology of the northwestern continental margin of India. Marine Geodesy 23, 259265.Google Scholar
Chauhan, O.S., Raghavan, B.R., Singh, K., Rajawat, A.S., Ajai, Kader, U.S.A., Nayak, S., 2011. Influence of orographically enhanced SW monsoon flux on coastal processes along the SE Arabian Sea. Journal of Geophysical Research 116, C12037. http://dx.doi.org/10.1029/2011JC007454.Google Scholar
Cook, B.I., Ault, T.R., Smerdon, J.E., 2015. Unprecedented 21st century drought risk in the American southwest and central plains. Science Advances 1, e1400082.Google Scholar
De Menocal, P., Ortiz, J., Guilderson, T., Sarnthein, M., 2000. Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288, 21982202.CrossRefGoogle ScholarPubMed
Dixit, Y., Hodell, D.A., Petrie, C.A., 2014. Abrupt weakening of the summer monsoon in northwest India ∼4100 yr ago. Geology 42, 339342. http://dx.doi.org/10.1130/G35236.1.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R., Sandler, A., 1999. High resolution Holocene environmental changes in the Thar Desert, northwestern India. Science 284, 125128.CrossRefGoogle ScholarPubMed
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.Google Scholar
Gadd, C.J., Smith, S., 1924. The New Links between India and Babylonian Civilizations. Illustrated London News, 4 October, pp. 614616.Google Scholar
Gadgil, S., 2003. The Indian monsoon and its variability. Annual Review of Earth Planetary Sciences 31, 429467.CrossRefGoogle Scholar
Govil, P., Naidu, P.D., 2010. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: implications on monsoon variability. Paleoceanography 25, PA1210. http://dx.doi.org/10.1029/2008PA001687.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., Satow, C., Roberts, A.P., 2012. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, 74 4747.Google Scholar
Gupta, A.K., Anderson, D.M., Overpeck, J.T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354357.Google Scholar
Gupta, A.K., Das, M., Anderson, D.M., 2005. Solar influence on the Indian summer monsoon during the Holocene. Geophysical Research Letters 32, L17703. http://dx.doi.org/10.1029/2005GL022685.Google Scholar
Hashimi, N.H., Nigam, R., Nair, R.R., Rajagopalan, G., 1995. Holocene sea level fluctuations on western Indian continental margin: an update. Journal Geological Society of India 46, 157162.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Kelly, R.L., Surovell, T.A., Shuman, B.N., Smith, G.M., 2013. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proceedings National Academy of Sciences 110, 443447.Google Scholar
Kessarkar, P.M., Rao, V.P., Naqvi, S.W.A., Karapurkar, S.G., 2013. Variation in the Indian summer monsoon intensity during the Bølling-Allerød and Holocene. Paleoceanography 28. http://dx.doi.org/10.1002/palo.20040.Google Scholar
Kienast, M., Lehmann, M.F., Timmermann, A., Galbraith, E., Bolliet, T., Holbourn, A., Normandeau, C., Laj, C., 2008. A mid-Holocene transition in the nitrogen dynamics of the western equatorial Pacific: evidence of a deepening thermocline? Geophysical Research Letters 35, L23610.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.Google Scholar
Lea, D.W., Mashiotta, T.A., Spero, H.J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochemica Cosmochemica Acta 63, 23692379.Google Scholar
Lemmen, C., Khan, A., 2012. A simulation of the neolithic transition in the Indus Valley. In: Giosan, L., Fuller, D.Q., Nicoll, K., Flad, R.K., Clift, P.D. (Eds.), Climates, Landscapes, and Civilizations, Geophys. Monogr. Ser, 198. AGU, Washington, D.C., pp. 107114. http://dx.doi.org/10.1029/GM198 Google Scholar
Levin, L.A., 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology: an Annual Review 41, 145.Google Scholar
Levy, M., Shankar, D., Andre, J.-M., Shenoi, S.S.C., Durand, F., de Boyer Montegut, C., 2007. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J. Geophys. Res. 112 (C12014) http://dx.doi.org/10.1029/2007JC004090.Google Scholar
Loulerge, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T.F., Chappellaz, J., 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383386.CrossRefGoogle Scholar
MacDonald, G., 2011. Potential influence of the Pacific Ocean on the Indian summer monsoon and Harappan decline. Quaternary International 229, 140148.Google Scholar
Madella, M., Fuller, D.Q., 2006. Palaeoecology and the Harappan civilisation of South Asia: a reconsideration. Quaternary Science Reviews 25, 12831301.CrossRefGoogle Scholar
Marcott, S.A., Bauska, T.K., Buizert, C., Steig, E.J., Rosen, J.L., Cuffey, K.M., Fudge, T.J., Severinghaus, J.P., Ahn, J., Kalk, M.L., McConnell, J.R., Sowers, T., Taylor, K.C., White, J.W.C., Brook, E.J., 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616619.Google Scholar
Monnin, E., Indermuhle, A., Dallenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.-M., 2001. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112114.Google Scholar
Naidu, P.D., Malmgren, B.A., 1995. A 2200 years periodicity in the Asian monsoon system. Geophysical Research Letters 22, 23612364.CrossRefGoogle Scholar
Naik, S.S., Godad, S.P., Naidu, P.D., Tiwari, M., Paropkari, A.L., 2014. Early- to late-Holocene contrast in productivity, OMZ intensity and calcite dissolution in the eastern Arabian Sea. The Holocene 24, 749755.Google Scholar
Narayana, A.C., Naidu, P.D., Shinu, N., Nagabhushanam, P., Sukhija, B.S., 2009. Carbonate and organic carbon content changes over last 20 ka in the southeastern Arabian Sea: Paleoceanographic implications. Quaternary International 206, 7277.Google Scholar
Naqvi, S.W.A., 1991. Geographical extent of denitri fication in the Arabian Sea in relation to some physical processes. Oceanologica Acta 14, 281290.Google Scholar
Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V., Naik, H., Sarma, V.V.S.S., De Souza, W., Joseph, S., George, M.D., 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408, 346349.Google Scholar
Naqvi, S.W.A., Naik, H., Narvekar, P.V., 2003. The Arabian Sea. In: Black, K., Shimmield, G.B. (Eds.), Biogeochemistry of Marine Systems, Oxford, UK, pp. 157207.Google Scholar
Nigam, R., Khare, N., Borole, D.V., 1992. Can benthic foraminiferal morpho-groups be used as indicators of paleomonsoonal precipitation? Estuarine Coastal and Shelf Science 34, 533542.Google Scholar
Nigam, R., Khare, N., Nair, R.R., 1995. Foraminiferal evidences for 77-year cycles of droughts in India and its possible modulation by the Gleissberg solar cycle. Journal of Coastal Research 11, 10991107.Google Scholar
Nigam, R., Mazumder, A., Henriques, P.J., Saraswat, R., 2007. Benthic foraminifera as proxy for oxygen-depleted conditions off the central west coast of India. Journal Geological Society of India 70, 10471054.Google Scholar
Possehl, G.L., 1997. The transformation of the Indus civilization. Journal of World Prehistory 11, 425472.Google Scholar
Prasad, S., Enzel, Y., 2006. Holocene paleoclimates of India. Quaternary Research 66, 442453.Google Scholar
Prasad, S., Kusumgar, S., Gupta, S.K., 1997. A midelate Holocene record of palaeoclimatic changes from Nal Sarovar-A palaeodesert margin lake in western India. Journal of Quaternary Science 12, 153159.3.0.CO;2-X>CrossRefGoogle Scholar
Prasanna Kumar, S., Narvekar, J., Kumar, A., Shaji, C., Anand, P., Sabu, P., Rejomon, G., Jacob, J., Jayaraj, K.A., Radhika, A., Nair, K.K.C., 2004. Intrusion of the Bay of Bengal water into the Arabian Sea during winter monsoon and associated chemical and biological response. Geophysical Research Letters 31 (L15304).CrossRefGoogle Scholar
Ramaswamy, V., Nair, R.R., 1989. Lack of cross-shelf transport of sediments on the western margin of India: evidence from clay mineralogy. Journal of Coastal Research 5, 541545.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W. Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0-50,000 ynnears cal BP. Radiocarbon 51, 11111150.Google Scholar
Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R., Sadori, L., 2011. The mid-Holocene climatic transition in the Mediterranean: causes and consequences. The Holocene 21, 313.Google Scholar
Ruddiman, W.F., Ellis, E.C., 2009. Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions. Quaternary Science Reviews 28, 30113015.Google Scholar
Sankalia, H.D., 1968. Prehistory and Protohistory of India and Pakistan. Bombay University, Bombay.Google Scholar
Saraswat, R., Nigam, R., Weldeab, S., Mackensen, A., Naidu, P.D., 2005. A first look at past sea surface temperatures in the equatorial Indian Ocean from Mg/Ca in foraminifera. Geophysical Research Letters 32, L24605. http://dx.doi.org/10.1029/2005GL024093.Google Scholar
Saraswat, R., Nigam, R., Mackensen, A., Weldeab, S., 2012. Linkage between seasonal insolation gradient in the tropical northern hemisphere and the sea surface salinity of the equatorial Indian Ocean during the last glacial period. Acta Geologica Sinica 86, 801811.Google Scholar
Saraswat, R., Lea, D.W., Nigam, R., Mackensen, A., Naik, D.K., 2013. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth and Planetary Science Letters 375, 166175.Google Scholar
Sarkar, A., Ramesh, R., Somayajulu, B.L.K., Agnihotri, R., Jull, A.J.T., Burr, G.S., 2000. High resolution Holocene monsoon record from the eastern Arabian Sea. Earth and Planetary Science Letters 177, 209218.Google Scholar
Schewe, J., Levermann, A., 2012. A statistically predictive model for future monsoon failure in India. Environmental Research Letters 7. http://dx.doi.org/10.1088/1748-9326/7/4/044023.Google Scholar
Shankar, D., Vinaychandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogra 52, 63120.Google Scholar
Shenoi, S.S.C., Shankar, D., Shetye, S.R., 1999. The sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon. Journal of Geophysical Research 104, 703712.Google Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, C.h., Meischner, D., Schmelzer, I., Smeed, D.A., 2003. Sealevel fluctuations during the last glacial cycle. Nature 423, 853858.Google Scholar
Singh, A.D., Jung, S.J.A., Darling, K., Ganeshram, R., Ivanochko, T., Kroon, D., 2011. Productivity collapses in the Arabian Sea during glacial cold phases. Paleoceanography 26, PA3210. http://dx.doi.org/10.1029/2009PA001923.Google Scholar
Singh, G., Joshi, R.D., Chopra, S.K., Singh, A.B., 1974. Late Quaternary history of vegetation and climate of the Rajasthan Desert, India. Philosophical Transactions of The Royal Society of London Series B 267, 467501.Google Scholar
Sinha, R., Smykatz-Kloss, W., Stüben, D., Harrison, S.P., Berner, Z., Kramar, U., 2006. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeography, Palaeoclimatology, Palaeoecology 233, 252270.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, A., Duplessy, J.C., 1993. Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322324.Google Scholar
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., Yim, W.W.-S., 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167180.Google Scholar
Stager, J.C., Mayewski, P.A., 1997. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science 276, 18341836.Google Scholar
Staubwasser, M., et al., 2003a. Arabian Sea Cores 63KA, 41KL, 42KG Foraminiferal Oxygen Isotope Data, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2003-059 (NOAA/NGDC Paleoclimatology Program, Boulder CO, USA).Google Scholar
Staubwasser, M., Sirocko, F., Grootes, P.M., Segl, M., 2003b. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30, 1425. http://dx.doi.org/10.1029/2002GL016822.Google Scholar
Steinhilber, F., Beer, J., Fróhlich, C., 2009. Total solar irradiance during the Holocene. Geophysical Research Letters 36, L19704. http://dx.doi.org/10.1029/2009GL040142.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Swain, A.M., Kutzbach, J.E., Hastenrath, S., 1983. Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake level data. Quaternary Research 19, 117.Google Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., 2012. Guliya Ice Core 128 Ka Isotope, Dust, Anion, and Accumulation Data. IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 2012-011.Google Scholar
Vincenzo, De Santis, Massimo, C., 2015. The 5.5-4.5 ka climatic transition as recorded by the sedimentation pattern of coastal deposits of the Apulia region, southern Italy. Holocene 117.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Weldeab, S., Schneider, R.R., Kólling, M., Wefer, G., 2005. Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33, 981984.Google Scholar
Yadav, R.R., Braeuning, A., Singh, J., 2011. Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Climate Dynamics 36, 15451554.CrossRefGoogle Scholar
Yang, X., Scuderi, L., Paillou, P., Liu, Z., Li, H., Ren, X., 2011. Quaternary environmental changes in the drylands of China — a critical review. Quaternary Science Reviews 30, 32193233.Google Scholar
Yang, X., Wang, X., Liu, Z., Li, H., Ren, X., Zhang, D., Ma, Z., Rioual, P., Jin, X., Scuderi, L., 2013. Initiation and variation of the dune fields in semi-arid China — with a special reference to the Hunshandake Sandy Land, Inner Mongolia. Quaternary Science Reviews 78, 369380.Google Scholar