Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T17:20:54.143Z Has data issue: false hasContentIssue false

Temperatures of the past 2000 years inferred from lake sediments, southwest Yukon Territory, Canada

Published online by Cambridge University Press:  20 January 2017

Abstract

Lake sediments from four sites in the southwest Yukon Territory, Canada, provided paleotemperature records for the past 2000 yr. An alpine and a forest site from the southeastern portion of the study area, near Kluane Lake, and another alpine-forest pair of lakes from the Donjek River area located to the northwest yielded chironomid records that were used to provide quantitative estimates of mean July air temperature. Prior to AD 800, the southwest Yukon was relatively cool whereas after AD 800 temperatures were more variable, with warmer conditions between ~ AD 1100 and 1400, cooler conditions during the Little Ice Age (~ AD 1400 to 1850), and warming thereafter. These records compare well with other paleoclimate evidence from the region.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L., Abbott, M.B., Finney, B.P., Burns, S.J., (2005). Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research. 64, 2135.Google Scholar
Anderson, L., Abbott, M.B., Finney, B.P., Burns, S.J., (2007). Late Holocene moisture balance variability in the southwest Yukon Territory, Canada. Quaternary Science Reviews. 26, 130141.Google Scholar
Anderson, L., Finney, B.P., Shapley, M.D., (2011). Lake carbonate-δ18O records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns. Quaternary Science Reviews. 30, 887898.CrossRefGoogle Scholar
Barley, E.M., (2004). Paleoclimate Analysis of Southwestern Yukon Territory Using Subfossil Chironomid Remails from Antifreeze Pond. MSc. Thesis, Simon Fraser University.Google Scholar
Barley, E.M., Walker, I.R., Kurek, J., Cwynar, L.C., Mathewes, R.W., Gajewski, K., Finney, B.P., (2006). A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. Journal of Paleolimnology. 36, 295314.Google Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F., (1990). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B-Biological Sciences. 327, 263278.Google Scholar
Brahney, J., Clague, J.J., Menounos, B., Edwards, T.W.D., (2008). Timing and cause of water level fluctuations in Kluane Lake, Yukon Territory, over the past 5000 years. Quaternary Research. 70, 213227.CrossRefGoogle Scholar
Brooks, S.J., Langdon, P.G., Heiri, O., (2007). The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Technical Guide No. 10. Quaternary Research Association, London.Google Scholar
Bunbury, J., Gajewski, K., (2005). Quantitative analysis of freshwater ostracode assemblages in southwestern Yukon Territory, Canada. Hydrobiologia. 545, 117128.Google Scholar
Bunbury, J., Gajewski, K., (2008). Does a one point sample adequately characterize the lake environment for paleoenvironmental calibration studies?. Journal of Paleolimnology. 39, 511531.Google Scholar
Bunbury, J., Gajewski, K., (2009a). Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quaternary Science Reviews. 28, 354369.Google Scholar
Bunbury, J., Gajewski, K., (2009b). Variations in the depth and thickness of the White River Ash in lakes of the southwest Yukon. Weston, L.H., Blackburn, L.R., Lewis, L.L., Yukon Exploration and Geology 2008, Yukon Geological Survey, Whitehorse, 7784.Google Scholar
Clague, J.J., Evans, S.G., Rampton, V.N., Woodsworth, G.J., (1995). Improved age estimates for the White River and Bridge River tephras, western Canada. Canadian Journal of Earth Sciences. 32, 11721179.CrossRefGoogle Scholar
Clague, J.J., Luckman, B.H., Van Dorp, R.D., Gilbert, R., Froese, D., Jensen, B.J.L., Reyes, A.V., (2006). Rapid changes in the level of Kluane Lake in Yukon Territory over the last millennium. Quaternary Research. 66, 342355.Google Scholar
Conley, D.J., (1998). An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry. 63, 3948.Google Scholar
Delorme, L.D., (1970a). Freshwater ostracodes of Canada. Part I. Subfamily Cypridinae. Canadian Journal of Zoology. 48, 153168.Google Scholar
Delorme, L.D., (1970b). Freshwater ostracodes of Canada. Part II. Subfamily Cypridopsinae and Herpetocypridinae and family Cyclocyprididae. Canadian Journal of Zoology. 48, 253266.Google Scholar
Delorme, L.D., (1970c). Freshwater ostracodes of Canada. Part III. Family Candonidae. Canadian Journal of Zoology. 48, 10991127.Google Scholar
Delorme, L.D., (1970d). Freshwater ostracodes of Canada. Part IV. Families Ilyocyprididae, Notodromadidae, Darwinulidae, Cytherideidae, and Entocytheridae. Canadian Journal of Zoology. 48, 12511259.Google Scholar
Delorme, L.D., (1971). Freshwater ostracodes of Canada. Part V. Families Limnocytheridae and Loxoconchidae. Canadian Journal of Zoology. 49, 4364.Google Scholar
DeMaster, D.J., (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta. 45, 17151732.CrossRefGoogle Scholar
Denton, G.H., Karlén, W., (1973). Holocene climatic variations — their pattern and possible causes. Quaternary Research. 3, 155205.Google Scholar
Environment Canada, , (2000). Canadian Climate Normals. Environment Canada, Ottawa, http://www.climate.weather-office.ec.gc.ca/climate_normals/index_e.html.Google Scholar
Fisher, D., Wake, C., Kreutz, K., Yalcin, K., Steig, E., Mayewksi, P., Anderson, L., Zheng, J., Rupper, S., Zdanowicz, C., Demuth, M., Waszkiewicz, M., Dahl-Jensen, D., Goto-Azuma, K., Bourgeois, J.B., Koerner, R.M., Sekerka, J., Osterberg, E., Abbott, M.B., Finney, B.P., Burns, S.J., (2004). Stable isotope records from Mount Logan, Eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometres: sudden shifts and tropical connections. Geographie physique et Quaternaire. 58, 337352.Google Scholar
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz, C., Bourgeois, J., Koerner, R.M., Mayewksi, P., Wake, C., Kreutz, K., Steig, E., Zheng, J., Yalcin, K., Goto-Azuma, K., Luckman, B., Rupper, S., (2008). The Mt. Logan Holocene-Late Wisconsinan isotope record: Tropical Pacific-Yukon connections. The Holocene. 18, 667677.Google Scholar
Fulton, R.J., (1995). Surficial Materials of Canada, Map 1880A. (Compiler)Geological Survey of Canada, Ottawa.Google Scholar
Griffiths, H.I., Holmes, J.A., (2000). Non-marine ostracods and Quaternary paleoenvironments. Technical Guide No. 8. Quaternary Research Association, London.Google Scholar
Heiri, O.A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology. 26, 343350.Google Scholar
Heiri, O.A.F., Lotter, G., (2001). Effect of low sum counts on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology. 26, 343350.Google Scholar
Jones, P.D., Briffa, K.R., Osborn, T.J., Lough, J.M., van Ommen, T.D., Vinther, B.M., Luterbacher, J., Wahl, E.R., Zwiers, F.W., Mann, M.E., Schmidt, G.A., Ammann, C.M., Buckley, B.M., Cobb, K.M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Küttel, M., Mosley-Thompson, E., Overpeck, J.T., Riedwyl, N., Schulz, M., Tudhope, A.W., Villalba, R., Wanner, H., Wolff, E., Yalcin, K., (2009). High-resolution palaeoclimatology of the last millenium: a review of current status and future prospects. The Holocene. 19, 349.Google Scholar
Kaufman, D.S., (2009). An overview of late Holocene climate and environmental change inferred from Arctic lake sediment. Journal of Paleolimnology. 41, 16.Google Scholar
Kurek, J., Cwynar, L.C., Verschuren, D., (2009). A late Quaternary paleotemperature record from Hanging Lake, northern Yukon Territory, eastern Beringia. Quaternary Science Reviews. 72, 246257.Google Scholar
Larocque, I., Rolland, N., (2006). A Visual Guide to Sub-fossil Chironomids from Quebec to Ellesmere Island. Institut national de la recherche scientifique, Universite of Quebec, Quebec.Google Scholar
Loso, M.J., (2009). Summer temperatures during the Medieval Warm Period and Little Ice Age inferred from varved proglacial lake sediments in southern Alaska. Journal of Paleolimnology. 41, 117128.Google Scholar
Lowdon, J.A., Blake jr., W., (1968). Geological survey of Canada radiocarbon dates VII. Radiocarbon. 10, 207245.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science. 326, 12561260.Google Scholar
National Atlas Information Service, , (1995). Canada, Permafrost. MCR 4177. Fifth ed. Natural Resources Canada, Ottawa.Google Scholar
Overpeck, J.T., Webb III, T., Prentice, I.C., (1985). Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research. 23, 87108.Google Scholar
Parsons, T.R., (1984). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon, Oxford.Google Scholar
Peros, M.C., Gajewski, K., (2009). Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic. Journal of Paleolimnology. 41, 161175.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk, Ramsey C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon. 51, 11111150.Google Scholar
Reyes, A.V., Wiles, G.C., Smith, D.J., Barclay, D.J., Allen, S., Jackson, S., Larocque, S., Laxton, S., Lewis, D., Calkin, P.E., Clague, J.J., (2006a). Expansion of alpine glaciers in Pacific North America in the first millenium A.D.. Geology. 34, 5760.CrossRefGoogle Scholar
Reyes, A.V., Luckman, B.H., Smith, G.L., Clague, J.J., Van Dorp, R.D., (2006b). Tree-ring dates for the maximum Little Ice Age advance of Kaskawulsh Glacier, St. Elias Mountains, Canada. Arctic. 59, 1420.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., (1993). Extended 14C database and revised CALIB radiocarbon calibration program (v. 5.0.1). Radiocarbon. 35, 215230.Google Scholar
ter Braak, C.J.F., (1995). Ordination. Jongman, R.H.G., ter Braak, C.J.F., van Tongeren, O.F.R., Data Analysis in Community and Landscape Ecology, Cambridge University Press, Cambridge, 91173.CrossRefGoogle Scholar
ter Braak, C.J.F., Prentice, I.C., (1988). A theory of gradient analysis. Advances in Ecological Research. 18, 271317.Google Scholar
ter Braak, C.J.F., Šmilauer, P., (2002). CANOCO for Windows: Software for Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York.Google Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., Bunbury, J., (2008). Low- and high-frequency climate variability in Eastern Beringia during the past 25,000 years. Canadian Journal of Earth Sciences. 45, 14351453.Google Scholar
Wahl, H.E., Fraser, D.B., Harvey, R.C., Maxwell, J.B., (1987). Climate of Yukon. Environment Canada, Ottawa.Google Scholar
Walker, I., (2001). Midges: Chironomidae and related Diptera. Smol, J.P., Birks, H.J.B., Last, W.M., Tracking Environmental Change Using Lake Sediments. Volume 4, Kluwer Academic Publishers, Boston, 4366.CrossRefGoogle Scholar
Wheeler, J.O., Hoffman, P.F., Card, K.D., Davidson, A., Sandford, B.V., Okulitch, A.V., Roest, W.R., (1997). Geological Map of Canada, Map D1860A. (Compilers)Geological Survey of Canada, Ottawa.Google Scholar
Chironomidae of the Holarctic region. Wiederholm, T., (1983). Keys and Diagnoses. Part 1 — Larvae. Entomologica Scandinavica Supplement No. 19.Google Scholar
Wilson, S.E., Gajewski, K., (2004). Modern chironomid assemblages and their relationship to physical and chemical variables in southwest Yukon and northern British Columbia lakes. Arctic. Antarctic and Alpine Research. 36, 446455.CrossRefGoogle Scholar
Youngblut, D., Luckman, B., (2008). Maximum June–July temperatures in the southwest Yukon over the last 300 years reconstructed from tree rings. Dendrochronologia. 25, 153166.Google Scholar