Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T09:04:21.711Z Has data issue: false hasContentIssue false

A speleothem record of Holocene climate variability from southwestern Mexico

Published online by Cambridge University Press:  20 January 2017

Juan Pablo Bernal*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
Matthew Lachniet
Affiliation:
Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89154-4010, USA
Malcolm McCulloch
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT, 0200, Australia
Graham Mortimer
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT, 0200, Australia
Pedro Morales
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
Edith Cienfuegos
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico
*
Corresponding author. Now at: Centro de Geociencias, Campus UNAM Juriquilla, Querétaro, Mexico 76230. Fax: + 52 55 56234317.

Abstract

A paleoclimate reconstruction for the Holocene based upon variations of δ18O in a U–Th dated stalagmite from southwestern Mexico is presented. Our results indicate that the arrival of moisture to the area has been strongly linked to the input of glacial meltwaters into the North Atlantic throughout the Holocene. The record also suggests a complex interplay between Caribbean and Pacific moisture sources, modulated by the North Atlantic SST and the position of the ITCZ, where Pacific moisture becomes increasingly more influential through ENSO since ~ 4.3 ka. The interruption of stalagmite growth during the largest climatic anomalies of the Holocene (10.3 and 8.2 ka) is evidenced by the presence of hiatuses, which suggest a severe disruption in the arrival of moisture to the area. The δ18O record presented here has important implications for understanding the evolution of the North American Monsoon and climate in southwestern Mexico, as it represents one of the most detailed archives of climate variability for the area spanning most of the Holocene.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Current address: The School of Earth and Environment, The University of Western Australia, Crawley 6009, Australia.

References

Adams, D.K., and Comrie, A.C. The North American monsoon. Bulletin of the American Meteorological Society 78, (1997). 21972213.Google Scholar
Amador, J.A., Alfaro, E.J., Lizano, O.G., and Magaña, V.O. Atmospheric forcing of the eastern tropical Pacific: a review. Progress in Oceanography 69, (2006). 101142.Google Scholar
Asmerom, Y., Polyak, V., Burns, S., and Rassmussen, J. Solar forcing of Holocene climate: new insights from a speleothem record, southwestern United States. Geology (2007). 14.Google Scholar
Barron, J.A., Bukry, D., and Dean, W.E. Paleoceanographic history of the Guaymas Basin, Gulf of California, during the past 15,000 years based on diatoms, silicoflagellates, and biogenic sediments. Marine Micropaleontology 56, (2005). 81102.Google Scholar
Benway, H.M., Mix, A.C., Haley, B.A., and Klinkhammer, G.P. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr — art. no. PA3008. Paleoceanography 21, (2006). A3008 Google Scholar
Bjorck, S., Muscheler, R., Kromer, B., Andresen, C.S., Heinemeier, J., Johnsen, S.J., Conley, D., Koc, N., Spurk, M., and Veski, S. High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology 29, (2001). 11071110.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on north Atlantic climate during the Holocene. Science 294, (2001). 21302136.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science 278, (1997). 12571266. http://dx.doi.org/10.1126/science.278.5341.1257CrossRefGoogle Scholar
Bradbury, J.P. Limnologic history of Lago de Patzcuaro, Michoacan, Mexico for the past 48,000 years: impacts of climate and man. Palaeogeography Palaeoclimatology Palaeoecology 163, (2000). 6995.Google Scholar
Broccoli, A.J., Dahl, K.A., and Stouffer, R.J. Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters 33, (2006). L01702 Google Scholar
Caballero, M., Ortega, B., Valadez, F., Metcalfe, S., Macias, J.L., and Sugiura, Y. Sta. Cruz Atizapan: a 22-ka lake level record and climatic implications for the late Holocene human occupation in the Upper Lerma Basin, Central Mexico. Palaeogeography Palaeoclimatology Palaeoecology 186, (2002). 217235.CrossRefGoogle Scholar
Cleaveland, M.K., Stahle, D.W., Therrell, M.D., Villanueva-Diaz, J., and Burns, B.T. Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change 59, (2003). 369388.Google Scholar
Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., and Steinitz-Kannan, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, (2008). 11661180.Google Scholar
Cortés, A., Arizabalo, R.D., and Rocha, R. Estudio Hidrogeoquímico isotópico de manantiales en la cuenca de México. Geofísica Internacional 28, (1989). 265282.Google Scholar
Cortés, A., and Durazo, J. Tendencia del oxígeno-18 en la precipitación del centro de México. Ingeniería Hidráulica en México 16, (2001). 93102.Google Scholar
Cosford, J., Qing, H., Eglington, B., Mattey, D., Yuan, D., Zhang, M., and Cheng, H. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth and Planetary Science Letters 275, (2008). 296307.Google Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S., and Viana, O. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, (2005). 6366.Google Scholar
Cruz, J., Francisco, W., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., and Vuille, M. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71, (2007). 22502263.Google Scholar
Cheshire, H., Thurow, J., and Nederbragt, A.J. Late Quaternary climate change record from two long sediment cores from Guaymas Basin, Gulf of California. Journal of Quaternary Science 20, (2005). 457469.Google Scholar
Dahl, K.A., Broccoli, A.J., and Stouffer, R.J. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Climate Dynamics 24, (2005). 325346.Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus Series B 16, (1964). 436468.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spotl, C., Mattey, D., McDermott, F., E.I.M.F., Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, (2006). 105153.Google Scholar
Feng, S., Hu, Q., and Oglesby, R. Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dynamics (2010). http://dx.doi.org/10.1007/s00382-010-0835-xGoogle Scholar
Fletcher, K., Sharp, W.D., Kendrick, K., Behr, W., Hudnut, K., and Hanks, T. 230Th/U dating of a late Pleistocene alluvial fan offset along the southern San Andreas fault. Geological Society of America Bulletin 122, (2010). 13471359. http://dx.doi.org/10.1130/B30018.1Google Scholar
Grimm, E.C., Watts, W.A., Jacobson, J., George, L., Hansen, B.C.S., Almquist, H.R., and Dieffenbacher-Krall, A.C. Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews 25, (2006). 21972211.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Rohl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, (2001). 13041308. http://dx.doi.org/10.1126/science.1059725Google Scholar
Heiri, O., Tinner, W., and Lotter, A.F. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proceedings of the National Academy of Sciences 101, (2004). 1528515288. http://dx.doi.org/10.1073/pnas.0406594101Google Scholar
Hendy, C.H. The isotopic geochemistry of speleothems — I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, (1971). 801824.Google Scholar
Higgins, R.W., Chen, Y., and Douglas, A.V. Interannual variability of the North American warm season precipitation regime. Journal of Climate 12, (1999). 653680.Google Scholar
Hill, C.A., and Forti, P. Cave Minerals of the World. (1997). National Speleological Society, Huntsville, Ala.Google Scholar
Hodell, D.A., Anselmetti, F.S., Ariztegui, D., Brenner, M., Curtis, J.H., Gilli, A., Grzesik, D.A., Guilderson, T.J., Muller, A.D., Bush, M.B., Correa-Metrio, A., Escobar, J., and Kutterolf, S. An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews 27, (2008). 11521165.Google Scholar
Hodell, D.A., Curtis, J.H., and Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, (1995). 391394.Google Scholar
Hu, Q., and Feng, S. Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation. Journal of Climate 21, (2008). 23712383.Google Scholar
IAEA. (2006). Isotope Hydrology Information System. The ISOHIS Database. Accessible at: http://isohis.iaea.org.Google Scholar
Jauregui, E. Rainfall fluctations and tropical strom activity in Mexico. Erdkunde 49, (1995). 3948.Google Scholar
Kim, S.-T., and O'Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, (1997). 34613475.CrossRefGoogle Scholar
Kinga, M. R., Jurate, M. L., and Keybl, J. (2001). Measurement of δ13C and δ18O isotopic ratios of CaCO3 using a Thermoquest Finnigan Gas Bench II Delta PLus XL continuous flow isotope ratio mass spectrometer with application to Devils Hole Core DH-11 Calcite. U.S. Geological Survey, Open-file report 01-257.Google Scholar
Lachniet, M.S. Climatic and environmental controls on speleothem oxygen–isotope values. Quaternary Science Reviews 28, (2009). 412432.Google Scholar
Lachniet, M.S., Asmerom, Y., Burns, S.J., Patterson, W.P., Polyak, V.J., and Seltzer, G.O. Tropical response to the 8200 yr BP cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology 32, (2004). 957960.Google Scholar
Lachniet, M.S., and Patterson, W.P. Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth and Planetary Science Letters 284, (2009). 435446.Google Scholar
Lachniet, M.S., Patterson, W.P., Burns, S.J., Asmerom, Y., and Polyak, V.J. Caribbean and Pacific moisture sources on the Isthmus of Panama revealed from stalagmite and surface water δ18O gradients. Geophysical Research Letters 34, (2007). 1708 Google Scholar
Lachniet, M.S., and Vázquez-Selem, L. Last glacial maximum equilibrium line altitudes in the circum-caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). Quaternary International 138, (2005). 129144.Google Scholar
Lavin, M.F., Beier, E., Gomez-Valdes, J., Godinez, V.M., and Garcia, J. On the summer poleward coastal current off southwest Mexico — art. no. L02601. Geophysical Research Letters 33, (2006). 2601 Google Scholar
Lavín, M.F., Fiedler, P.C., Amador, J.A., Ballance, L.T., Färber-Lorda, J., and Mestas-Nuñez, A.M. A review of eastern tropical Pacific oceanography: summary. Progress in Oceanography 69, (2006). 391398.Google Scholar
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 445, (2007). 908911.Google Scholar
Lozano-García, S., and Vázquez-Selem, L. A high-elevation Holocene pollen record from Iztaccihuátl volcano, central Mexico. Holocene 15, (2005). 329338.Google Scholar
Ludwig, K. R. (2001). Users manual for Isoplot/Ex. rev. 2.49. Berkeley Geochronology Center. Special Publication No. 1a, Berkeley, CA.Google Scholar
Ludwig, K.R., and Paces, J.B. Uranium-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochimica et Cosmochimica Acta 66, (2002). 487506.Google Scholar
Magaña, V., Amador, J.A., and Medina, S. The midsummer drought over Mexico and Central America. Journal of Climate 12, (1999). 15771588.Google Scholar
Magaña, V., Vázquez, J.L., Pérez, J.L., and Pérez, J. Impact of El Niño on precipitation in Mexico. Geofísica Internacional 42, (2003). 313330.Google Scholar
Matthews, J.A., Dahl, S.O., Nesje, A., Berrisford, M.S., and Andersson, C. Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores. Quaternary Science Reviews 19, (2000). 16251647.Google Scholar
McCulloch, M.T., and Mortimer, G.E. Applications of the U-238–Th-230 decay series to dating of fossil and modern corals using MC-ICPMS. Australian Journal of Earth Sciences 55, (2008). 955965.Google Scholar
McDonough, W.F., and Sun, S.S. The composition of the earth. Chemical Geology 120, (1995). 223253.Google Scholar
Metcalfe, S.E., O'Hara, S.L., Caballero, M., and Davies, S.J. Records of late Pleistocene–Holocene climatic change in Mexico — a review. Quaternary Science Reviews 19, (2000). 699721.Google Scholar
Monod, O., Busnardo, R., and Guerrero-Suastegui, M. Late Albian ammonites from the carbonate cover of the Teloloapan arc volcanic rocks (Guerrero State, Mexico). Journal of South American Earth Sciences 13, (2000). 377388.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, (2002). 162165.Google Scholar
Ortega, B., Caballero, C., Lozano, S., Israde, I., and Vilaclara, G. 52,000 years of environmental history in Zacapu basin, Michoacan, Mexico: the magnetic record. Earth and Planetary Science Letters 202, (2002). 663675.Google Scholar
Osmond, J.K., and Ivanovich, M. Uranium-series mobilization and surface hydrology. Ivanovich, M., and Harmon, R.S. Uranium-Series Disequilibrium. Applications to Earth, Marine, and Environmental Sciences. (1992). Oxford science publications, Oxford. 259289.Google Scholar
Pérez-Cruz, L. Climate and ocean variability during the middle and late Holocene recorded in laminated sediments from Alfonso Basin, Gulf of California, Mexico. Quaternary Research 65, (2006). 401410.Google Scholar
Peterson, L.C., and Haug, G.H. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography Palaeoclimatology Palaeoecology 234, (2006). 97113.Google Scholar
Piperno, D.R., Moreno, J.E., Iriarte, J., Holst, I., Lachniet, M., Jones, J.G., Ranere, A.J., and Castanzo, R. Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proceedings of the National Academy of Sciences 104, (2007). 1187411881. http://dx.doi.org/10.1073/pnas.0703442104Google Scholar
Richards, D.A., and Dorale, J.A. Uranium-series chronology and envirnomental applications of speleothems. Bourdon, B., Henderson, G.M., Lundstrom, C.C., and Turner, C. Uranium-Series Geochemistry. Reviews in mineralogy and geochemistry (2003). Mineralogical Society of America & The Geochemical Society, Washington, DC, USA. 407450.Google Scholar
Schmidt, M.W., Spero, H.J., and Lea, D.W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, (2004). 160163.Google Scholar
Schmitz, J.T., and Mullen, S.L. Water vapor transport associated with the summertime north american monsoon as depicted by ECMWF analyses. Journal of Climate (1996). 16211634.Google Scholar
Schulz, M., and Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, (2002). 421426.Google Scholar
Schulz, M., and Stattegger, K. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Computers & Geosciences 23, (1997). 929945.Google Scholar
Sedov, S., Solleiro-Rebolledo, E., Gama-Castro, J.E., Vallejo-Gomez, E., and Gonzalez-Velazquez, A. Buried palaeosols of the Nevado de Toluca: an alternative record of late Quaternary environmental change in central Mexico. Journal of Quaternary Science 16, (2001). 375389.Google Scholar
Sharp, W.D., Ludwig, K.R., Chadwick, O.A., Amundson, R., and Glaser, L.L. Dating fluvial terraces by 230Th/U on pedogenic carbonate, Wind River Basin, Wyoming. Quaternary Research 59, (2003). 139150.Google Scholar
Sonett, C.P., and Finney, S.A. The spectrum of radiocarbon. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 330, (1990). 413426.Google Scholar
Stuiver, M., and Braziunas, T.F. Atmospheric 14C and century-scale solar oscillations. Nature 338, (1989). 405408.Google Scholar
Stuiver, M., Grootes, P.M., and Braziunas, T.F. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, (1995). 341354.Google Scholar
Treble, P.C., Schmitt, A.K., Edwards, R.L., McKeegan, K.D., Harrison, T.M., Grove, M., Cheng, H., and Wang, Y.J. High resolution secondary ionisation mass spectrometry (SIMS) delta O-18 analyses of Hulu Cave speleothem at the time of Heinrich Event 1. Chemical Geology 238, (2007). 197212.Google Scholar
Vellinga, M., and Wood, R.A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54, (2002). 251267.Google Scholar
Wang, C., and Fiedler, P.C. ENSO variability and the eastern tropical Pacific: a review. Progress in Oceanography 69, (2006). 239266.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., and Shen, C.-C. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, (2004). 740743.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.CrossRefGoogle ScholarPubMed
Webster, J.W., Brook, G.A., Railsback, L.B., Cheng, H., Edwards, R.L., Alexander, C., and Reeder, P.P. Stalagmite evidence from Belize indicating significant droughts at the time of Preclassic abandonment, the Maya Hiatus, and the Classic Maya collapse. Palaeogeography Palaeoclimatology Palaeoecology 250, (2007). 117.Google Scholar
Wiersma, A.P., and Renssen, H. Model-data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews 25, (2006). 6388.Google Scholar
Zhang, R., and Delworth, T.L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18, (2005). 18531860.CrossRefGoogle Scholar
Zhou, J.Z., Lundstrom, C.C., Fouke, B., Panno, S., Hackley, K., and Curry, B. Geochemistry of speleothem records from Southern Illinois: development of (U-234)/(U-238) as a proxy for paleoprecipitation. Chemical Geology 221, (2005). 120.Google Scholar