Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T13:48:12.623Z Has data issue: false hasContentIssue false

Recently exposed vegetation reveals Holocene changes in the extent of the Quelccaya Ice Cap, Peru

Published online by Cambridge University Press:  20 January 2017

Aron M. Buffen*
Affiliation:
Byrd Polar Research Center and School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Lonnie G. Thompson*
Affiliation:
Byrd Polar Research Center and School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Ellen Mosley-Thompson
Affiliation:
Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, OH 43210, USA
Kyung In Huh
Affiliation:
Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, OH 43210, USA
*
Corresponding authors. Byrd Polar Research Center, Scott Hall Rm. 108, 1090 Carmack Rd., The Ohio State University, Columbus, OH 43210-1002, USA. Fax: +1 614 292 4697.

E-mail addresses:[email protected] (A.M. Buffen), [email protected] (L.G. Thompson).

Corresponding authors. Byrd Polar Research Center, Scott Hall Rm. 108, 1090 Carmack Rd., The Ohio State University, Columbus, OH 43210-1002, USA. Fax: +1 614 292 4697.

E-mail addresses:[email protected] (A.M. Buffen), [email protected] (L.G. Thompson).

Abstract

Radiocarbon dating of well-preserved, in-place vegetation exposed by the retreating Quelccaya Ice Cap of southeastern Peru constrains the last time the ice cap's extent was smaller than at present. Seventeen plant samples from two sites along the central western margin collectively date to 4700 and 5100 cal yr BP and strongly indicate that current ice cap retreat is unprecedented over the past ∼ 5 millennia. Seventeen vegetation samples interbedded in a nearby clastic sedimentary sequence suggest ice-free conditions at this site from ∼ 5200 to at least ∼ 7000 cal yr BP, and place minimum constraint on early- to mid-Holocene ice cap extent.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceituno, P. On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Monthly Weather Review 116, 3 (1988). 505524.Google Scholar
Anderson, R.K., Miller, G.H., Briner, J.P., Lifton, N.A., and DeVogel, S.B. A millennial perspective on Arctic warming from 14C in quartz and plants emerging from beneath ice caps. Geophysical Research Letters 35, (2008). L01502 Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of South American tropical precipitation for the past 25,000 years. Science 291, 5504 (2001). 640643.Google Scholar
Bar-Matthews, M., Ayalona, A., Kaufman, A., and Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, (1999). 8595.Google Scholar
Baroni, C., and Orombelli, G. The alpine “Iceman” and Holocene climatic change. Quaternary Research 46, 1 (1996). 7883.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., and Rylander, K.A. A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, 5484 (2000). 15421546.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 5549 (2001). 21302136.Google Scholar
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 2 (1995). 425430.Google Scholar
Cane, M.A. A role for the tropical Pacific. Science 282, 5386 (1998). 5961.CrossRefGoogle Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African Humid Period: rapid climate response to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 261347.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M. Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288, 5474 (2000). 21982202.CrossRefGoogle ScholarPubMed
Eyles, N., Eyles, C.H., and Miall, A.D. Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology 30, (1983). 393410.CrossRefGoogle Scholar
Garreaud, R., Vuille, M., and Clement, A.C. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 522.Google Scholar
Gasse, F. Hydrological changes in Africa. Science 292, 5525 (2001). 22592260.Google Scholar
Grootes, P.M., Stuiver, M., Thompson, L.G., and Mosley-Thompson, E. Oxygen isotope changes in tropical ice, Quelccaya, Peru. Journal of Geophysical Research 94, D1 (1989). 11871194.Google Scholar
Grosjean, M. Mid-Holocene climate in the south-central Andes: humid or dry?. Science 292, 5526 (2001). 2391 Google Scholar
Grosjean, M., Cartajena, I., Geyh, M.A., and Nuñez, L. From proxy data to paleoclimate interpretation: the mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 247258.Google Scholar
Grosjean, M., Santoro, C.M., Thompson, L.G., Núñez, L., and Standen, V.G. Mid-Holocene climate and culture change in the South Central Andes. Anderson, D.G., Maasch, K.A., and Sandweiss, D.H. Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions. (2007). Academic Press, San Diego. 51115.Google Scholar
Hardy, D.R., (2008). White-winged Diuca Finch (Diuca speculifera) nesting on Quelccaya Ice Cap, Perú. The Wilson Journal of Ornithology, in press.Google Scholar
Hegerl, G.C., Zwiers, F.W., Braconnot, P., Gillett, N.P., Luo, Y., Marengo Orsini, J.A., Nicholls, N., Penner, J.E., and Stott, P.A. Understanding and Attributing Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Hodell, D.A., Kanfoush, S.L., Shemesh, A., Crosta, X., Charles, C.D., and Guilderson, T.P. Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr B.P.. Quaternary Research 56, 2 (2001). 191198.CrossRefGoogle Scholar
Huber, U.M., and Markgraf, V. Holocene fire frequency and climate change at Rio Rubens Bog, southern Patagonia. Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the Western Americas. Ecological Studies vol. 160, (2003). Springer, New York. 357380.Google Scholar
Juen, I., Kaser, G., and Georges, C. Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Global and Planetary Change 59, (2007). 3748.Google Scholar
Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H., and Zhang, T. Observations: changes in snow, ice and frozen ground. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Magny, M., and Haas, J.N. A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. Journal of Quaternary Science 19, 5 (2004). 423430.Google Scholar
Magny, M., Leuzinger, U., Bortenschlager, S., and Haas, J.N. Tripartite climate reversal in Central Europe 5600–5300 years ago. Quaternary Research 65, 1 (2006). 319.Google Scholar
Mark, B.G., Seltzer, G.O., Rodbell, D.T., and Goodman, A.Y. Rates of deglaciation during the last glaciation and Holocene in the Cordillera Vilcanota–Quelccaya Ice Cap region, southeastern Perú. Quaternary Research 57, (2002). 87298.Google Scholar
Mark, B.G., and Seltzer, G.O. Tropical glacial meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Perú. Journal of Glaciology 49, 165 (2003). 271281.CrossRefGoogle Scholar
Mark, B.G., McKenzie, J.M., and Gomez, J. Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrological Sciences Journal 50, 6 (2005). 975987.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCal04 Southern Hemisphere calibration 0–11.0 cal kyr BP. Radiocarbon 46, (2004). 10871092.Google Scholar
Meier, M.F., Dyurgerov, B., Rick, U.K., O'Neel, S., Pfeffer, W.T., Anderson, R.S., Anderson, S.P., and Glazovsky, A.F. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317, 5841 (2007). 10641067.Google Scholar
Mercer, J.H., and Palacios, M.O. Radiocarbon dating of the last glaciation in Peru. Geology 5, 10 (1977). 600604.2.0.CO;2>CrossRefGoogle Scholar
Miall, A.D. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Review 22, (1985). 261308.Google Scholar
Oppo, D.W., McManus, J.F., and Cullen, J.L. Deepwater variability in the Holocene epoch. Nature 422, (2003). 277278.Google Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., and Seltzer, G.O. A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 1 (2003). 259279.Google Scholar
Rodbell, D.T., Seltzer, G.O., Mark, B.G., Smith, J.A., and Abbott, M.B. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quaternary Science Reviews 27, (2008). 16121626.Google Scholar
Rollo, F., Luciani, S., Canapa, A., and Marota, I. Analysis of bacterial DNA in skin and muscle of the Tyrolean iceman offers new insight into the mummification process. American Journal of Physical Anthropology 111, 2 (2000). 211219.Google Scholar
Rutllant, J., and Ulriksen, P. Boundary layer dynamics of the extremely arid northern part of Chile: the Antofagasta field experiment. Boundary - Layer Meteorology 17, (1979). 4555.Google Scholar
Salati, E., Dall'Olio, A., Matsui, E., and Gat, J.R. Recycling of water in the Amazon Basin: an isotopic study. Water Resources Research 15, 5 (1979). 12501258.Google Scholar
Seltzer, G.O., Baker, P., Cross, S., Dunbar, R., and Fritz, S. High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: evidence for Holocene aridity in the tropical Andes. Geology 26, 2 (1998). 167170.2.3.CO;2>CrossRefGoogle Scholar
Street-Perrott, F.A., and Perrott, R.A. Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean circulation. Nature 343, (1990). 607612.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Taljaard, J.J. Synoptic meteorology of the Southern Hemisphere. Newton, C.W. Meteorological Monograph vol. 13, (1972). American Meteorological Society, Boston. 139213.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Bolzan, J.F., and Koci, B.R. A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru. Science 229, (1985). 971973.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., and Liu, K.-b. Late Glacial Stage and Holocene tropical ice core records from Huascarán, Peru. Science 269, 5220 (1995). 4650.Google Scholar
Thompson, L.G., Mosley-Thompson, E., and Henderson, K.A. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. Journal of Quaternary Science 15, 4 (2000). 377394.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.-N., Mikhalenko, V.N., Hardy, D.R., and Beer, J. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298, 5593 (2002). 589593.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Brecher, H., Davis, M., León, B., Les, D., Lin, P.-N., Mashiotta, T., and Mountain, K. Abrupt tropical climate change: past and present. Proceedings of the National Academy of Sciences (U. S. A.) 103, 28 (2006). 1053610543.Google Scholar
Weng, C., Bush, M.B., Curtis, J.H., Kolata, A.L., Dillehay, D.H., and Binford, M.W. Deglaciation and Holocene climate change in the western Peruvian Andes. Quaternary Research 66, 1 (2006). 8796.Google Scholar
Wirrmann, D., and de Oliveira Almeida, L.F. Low Holocene levels (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 59, (1987). 315323.Google Scholar