Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T04:57:10.406Z Has data issue: false hasContentIssue false

Pollen from accurately dated speleothems supports alpine glacier low-stands during the early Holocene

Published online by Cambridge University Press:  20 January 2017

Daniela Festi*
Affiliation:
Institute of Botany, University of Innsbruck, Sternwartestraße. 15, 6020 Innsbruck, Austria
Dirk L. Hoffmann
Affiliation:
Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, 04103 Leipzig, Germany
Marc Luetscher
Affiliation:
Austrian Academy of Sciences, Institute for Interdisciplinary Mountain Research, Technikerstraße 21a, ICT, 6020 Innsbruck, Austria University of Innsbruck, Institute of Geology, Innrain 52, 6020 Innsbruck, Austria
*
*[email protected] (D. Festi)

Abstract

Deciphering pollen assemblages from alpine speleothems holds potential to provide unique information about past vegetation in rapidly changing environments. Here, we reconstruct subsurface aerosol transport at Milchbach cave (Switzerland, 1840 m asl) based on the pollen content of two Holocene stalagmites. We demonstrate that pollen is chiefly associated with bacterially mediated calcite fabrics, typical of a well-ventilated cave system. In contrast, pollen is absent from columnar calcite fabrics confirming that hydrological transport is not a significant process for the incorporation of pollen into speleothems at Milchbach cave. Our results support significant changes in the subsurface ventilation regime, which can be associated with the waxing and waning of Upper Grindelwald glacier. Pollen assemblages obtained from six carbonate sub-samples attest the presence of a mixed deciduous forest in the Grindelwald valley during the early and middle Holocene, in agreement with coeval regional pollen records. This study demonstrates that even small amounts of calcite (0.3–2.8 cm3) are capable of delivering pollen spectra representative of the original vegetation if sufficiently elevated deposition fluxes are provided.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, B., Gaillard, M.-J., Lotter, A.F., 1996. Switzerland. In: Berglund, B.E., Birks, H.J.B., Ralska-Jasiewiczowa, M., Wright, H.E. (Eds.), Palaeoecological Events during the Last 15000 Years: Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. J. Wiley & Sons, Chichester, pp. 647666.Google Scholar
Bastin, B., 1978. L’analyse pollinique des stalagmites: une nouvelle possibilité d’approche des fluctuations climatiques du Quaternaire. Annales Société Géologique de Belgique 101, 1319.Google Scholar
Bastin, B., 1990. L’analyse pollinique des concrétions stalagmitiques: méthodologie et résultats en provenance des grottes belges. In: Karstologia Mémoires 2, pp. 310.Google Scholar
Beug, H.J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München.Google Scholar
Borsato, A., Frisia, S., Jones, B., Van der Borg, K., 2000. Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. Journal of Sedimentary Research 70, 11731182.Google Scholar
Brook, G.A., Scott, L., Railsback, L.B., Goddard, E.A., 2010. A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Environments 74 (7), 870884.Google Scholar
Bui-Thi-Mai, , Girard, M., 1988. Apports actuels et anciens de pollens dans la grotte de Foissac (Aveyron, France). Bull. Institut français de Pondichéry. Travaux de la section scientifique et technique 25 (2), 4353.Google Scholar
Burney, D.A., Burney, L., 1993. Modern pollen deposition in cave sites: experimental results from New York State. New Phytologist 124, 523535.Google Scholar
Carrión, J.S., Scott, L., 1999. The challenge of pollen analysis in palaeoenvironmental studies of hominid beds: the record from Sterkfontein caves. Journal of Human Evolution 36 (4), 401408.Google Scholar
Caseldine, C.J., McGarry, S.F., Baker, A., Hawkesworth, C., Smart, P.L., 2008. Late Quaternary speleothem pollen in the British Isles. Journal of Quaternary Science 23, 193200.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Alexander, A.C., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and UeTh isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372, 8291.Google Scholar
Dorale, J.A., Liu, Z., 2009. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies 71, 7380.Google Scholar
Dredge, J., Fairchild, I.J., Harrison, R.M., Fernandez-Cortes, A., Sanchez-Moral, S., Jurado, V., Gunn, J., Smith, A., Spötl, C., Mattey, D., Wynn, P.M., Grassineau, N., 2013. Cave aerosols: distribution and contribution to speleothem geochemistry. Quaternary Science Reviews 63, 2341.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. IV. John Wiley & Sons, Ltd.Google Scholar
Faegri, K., Iversen, J., Kaland, P.E., Krzywinski, K., 1993. Bestimmungsschlüssel für die nordwesteuropäische Pollenflora. Gustav Fischer Verlag Jena, Stuttgart, New York.Google Scholar
Fairchild, I.J., Baker, A., 2012. Speleothem Science: from Process to Past Environments. Willey-Blackwell, p. 450.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermottF., E.I.M.F F., E.I.M.F, 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.Google Scholar
Fairchild, I.J., Treble, P.C., 2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28, 449468.Google Scholar
Federici, P.R., Ribolini, A., Spagnolo, M., 2016. Glacial history of the Maritime Alps from the LastGlacial maximum to the little Ice Age. In: Hughes, P.D., Woodward, J.C. (Eds.), Quaternary Glaciation in the Mediterranean Mountains. Geological Society, vol. 433. Special Publications, London. http://dx.doi.org/10.1144/SP433.9.Google Scholar
Goehring, B.M., Schaefer, J.M., Schluechter, C., Lifton, N.A., Finkel, N.C., Jull, A.J.T., Akçar, N., Alley, R.B., 2011. The Rhone Glacier was smaller than today for most of the Holocene. Geology 39, 679682.Google Scholar
González López, L., Vidal-Romaní, J.R., López Galindo, M.J., Vaqueiro Rodríguez, M., Sánchez, J., 2013. First data on testate amoebae in speleothems of cave in igneous rocks. Cadernos Lab. Xeoloxico de Laxe 37, 3756.Google Scholar
Hegi, G., 1918. Illustrierte Flora von Mittel-Europa. Mit besonderer Berücksichtigung von Deutschland, Oesterreich und der Schweiz. Band VI, 1. Hälfte. Dicotyledones (V. Teil). 544 S. + Anhang. München (J.F. Lehmann).Google Scholar
Heiri, O., Wick, L., Van Leeuwen, J.F.N., van der Knaap, W.O., Lotter, A.F., 2003. Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Palaeogeography Palaeoclimatology Palaeoecology 189, 3553.Google Scholar
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W., Schluechter, C., 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews 28, 2137e2149.Google Scholar
Jacky, W.A.G., Schnyder, F., Anselmier, J., 1870. Grindelwald 1:50000. In: Topographischer Atlas der Schweiz, 396. Eidg. Stabsbureau, Bern.Google Scholar
Joerin, U.E., Nicolussi, K., Fischer, A., Stocker, T.F., Schlüchter, C., 2008. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews 27, 337e350.Google Scholar
Joerin, U.E., Stocker, T.F., Schlüchter, C., 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16, 697704.Google Scholar
Juggins, S., 1991. C2 Data Analysis vs. 1.4.2.Google Scholar
Kirkbride, M.P., Winkler, S., 2012. Correlation of Late Quaternary moraines: impact of climate variability, glacier response, and chronological resolution. Quaternary Science Reviews 46, 129.Google Scholar
Lauber, K., Wagner, G., Gygax, A., 2012. Flora Helvetica. 5.Auflage. Haupt Verlag, Bern.Google Scholar
Lauritzen, S.E., Lovlie, R., Moe, D., Østbye, E., 1990. Palaeoclimate deduced from a multidisciplinary study of a half-million year old stalagmite from Rana, Northern Norway. Quaternary Research 34, 306316.Google Scholar
Lawton, G., 2010. Online Pollen Counter vs. 1.0.Google Scholar
Lotter, A.F., 1999. Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetation History and Archaeobotany 8, 165184.Google Scholar
Luetscher, M., Hoffmann, D.L., Frisia, S., Spötl, C., 2011. Holocene glacier history from alpine speleothems, Michbach cave, Switzerland. Earth and Planetary Science Letters 302, 95106.Google Scholar
McGarry, S.F., Caseldine, C.J., 2004. Speleopalynology: a neglected tool in British Quaternary studies. Quaternary Science Reviews 23, 23892404.Google Scholar
Mazei, Y., Belyakova, O., Trulova, A., Guidolin, L., Coppellotti, O., 2012. Testate amoebae communities from caves of some territories in European Russia and North- Eastern Italy. Protistology 7, 4250.Google Scholar
Meyer, M.C., Cliff, R.A., Spötl, C., Knipping, M., Mangini, A., 2009. Speleothems from the earliest Quaternary: Snapshots of paleoclimate and landscape evolution at the northern rim of the Alps. Quaternary Science Reviews 28, 13741391.Google Scholar
Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., Wick, L., 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68, 284302.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. Second. Blackwell Scientific Publications.Google Scholar
Nicolussi, K., Schlüchter, C., 2012. Calendar-dated glacier response in the Alps the 8.2 ka event. Geology 40, 819822.Google Scholar
Providoli, T., Kuhn, N., 2012. Climate and land use effects on forest cover in the Bernese Alps during the 20th century. Geographia Helvetica 67, 1525.Google Scholar
Ravazzi, C., Badino, F., Marsetti, D., Patera, G., Reimer, P.J., 2012. Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quaternary Science Reviews 58, 146161.Google Scholar
Ravazzi, C., Pini, R., Badino, F., De Amici, M., Londeix, L., Reimer, P.J., 2014. The latest LGM culmination of the Garda Glacier (Italian Alps) and the onset of glacial termination. Age of glacial collapse and vegetation chronosequence. Quaternary Science Reviews 105, 2647.Google Scholar
Reille, M., 1992. Pollen et spores d’Europe et d’Afrique du Nord. Supplement 1. Laboratoire de botanique historique et palynologie.Google Scholar
Rey, F., Schworer, C., Gobet, E., Colombaroli, D., van Leeuwen, J.F., Schleiss, S., Tinner, W., 2013. Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. The Holocene 23 (10), 14151427.Google Scholar
Schimmelpfennig, I., Schaefer, J.M., Akçar, N., Ivy-Ochs, S., Finkel, R.C., Schlüchter, C., 2012. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 40, 891894.Google Scholar
Seppä, H., 2007. Pollen analysis, principles. In: Scott, A.E. (Ed.), Encyclopedia of Quaternary Sciences. Elsevier B.V., pp. 24862497 Google Scholar
Sniderman, J.M., Woodhead, J.D., Hellstrom, J., Jordanb, G.J., Drysdale, R.N., Tylere, J.J., Porch, N., 2016. Pliocene reversal of late Neogene aridification. Proceedings of the National Academy of Sciences of the United States of America 113 (8), 19992004.Google Scholar
Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., Owen, L.A., Wanner, H., Wiles, G.C., Young, N.E., 2015. Holocene glacier fluctuations. Quaternary Science Reviews 111, 934.Google Scholar
Tremaine, D.M., Froelich, P.N., 2013. Speleothem trace element signatures: a hydrologic geochemical study of modern cave dripwaters and farmed calcite. Geochimica et Cosmochimica Acta 121, 522545.Google Scholar
Urban, J., Margielewski, W., Hercman, H., Žak, K., Zernitska, V., 2015. Jacek Pawlak and Marzena Schejbal-ChwastekDating of speleothems in non-karst caves - methodological aspects and practical application, Polish Outer Carpathians case study. Zeitschrift für Geomorphologie 59, 185210.Google Scholar
Wick, L., van Leeuwen, J.F., van der Knaap, W.O., Lotter, A.F., 2003. Holocene vegetation development in the catchment of Sägitalsee (1935 m asl) a small lake in the Swiss Alps. Journal of Paleolimnology 30, 261272.Google Scholar