Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T00:36:44.388Z Has data issue: false hasContentIssue false

Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica

Published online by Cambridge University Press:  20 January 2017

S.M. Aciego
Affiliation:
Institute for Isotope Geology and Mineral Resources, ETH-Zentrum, Clausiusstrasse 25, NW C 83.1, CH-8092, Zurich, Switzerland
K.M. Cuffey*
Affiliation:
Department of Geography, UC Berkeley, 507 McCone Hall, Berkeley, CA 94720-4740, USA
J.L. Kavanaugh
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada T6G 2E3
D.L. Morse
Affiliation:
Institute for Geophysics, University of Texas, 4412 Spicewood Springs Rd., No. 600, Austin, TX 78759-8500, USA
J.P. Severinghaus
Affiliation:
Scripps Institution of Oceanography, UC San Diego, San Diego, CA 92093-0244, USA
*
*Corresponding author.E-mail address:[email protected] (S.M. Aciego), [email protected] (K.M. Cuffey), [email protected] (J.L. Kavanaugh), [email protected] (D.L. Morse), [email protected] (J.P. Severinghaus).

Abstract

Ice exposed in ablation zones of ice sheets can be a valuable source of samples for paleoclimate studies and information about long-term ice dynamics. We report a 28-km long stable isotope sampling transect along a flowline on lower Taylor Glacier, Antarctica, and show that ice from the last glacial period is exposed here over tens of kilometers. Gas isotope analyses on a small number of samples confirm our age hypothesis. These chronostratigraphic data contain information about past ice dynamics and in particular should be sensitive to the longitudinal strain rate on the north flank of Taylor Dome, averaged over millennia. The imprint of climatic changes on ice dynamics may be discernible in these data.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anklin, M., Barnola, J.M., Schwander, J., Stauffer, B., Raynaud, D.(1995). Processes Affecting the CO2 concentrations measured in Greenland Ice.. Tellus Series B-Chemical and Physical Meteorology 47, 461470.CrossRefGoogle Scholar
Bender, M., Sowers, T., Dickson, M.L., Orchardo, J., Grootes, P., Mayewski, P.A., Meese, D.A.(1994). Climate correlations between Greenland and Antarctica during the past 100,000 years.. Nature 372, 663666.CrossRefGoogle Scholar
Clarke, G.K.C., Lhomme, N., Marshall, S.J.(2005). Tracer transport in the Greenland ice sheet: three-dimensional isotopic stratigraphy.. Quaternary Science Reviews 24, 155171.CrossRefGoogle Scholar
Coleman, M.L., Shepherd, T.J., Durham, J.J., Rouse, J.E., Moore, G.R.(1982). Reduction of water with zinc for hydrogen isotope analysis.. Analytical Chemistry 54, 993995.CrossRefGoogle Scholar
Dugan, J.P., Borthwick, J., Harmon, R.S., Gagnier, M.A., Glahn, J.E., Kinsel, E.P., Macleod, S., Viglino, J.A., Hess, J.W.(1985). Guanidine–"hydrochloride method for determination of water oxygen isotope ratios and the O-18 fractionation between carbon-dioxide and water at 25-degrees-C.. Analytical Chemistry 57, 17341736.CrossRefGoogle Scholar
Goldstein, S.J., Murrell, M.I., Nishiizumi, K., Nunn, A.J.(2004). Uranium-series chronology and cosmogenic Be-10-Cl-36 record of Antarctic ice.. Chemical Geology 204, 125143.CrossRefGoogle Scholar
Grootes, P.M., Steig, E.J., Stuiver, M., Waddington, E.D., Morse, D.L.(2001). The Taylor dome antarctic O-18 record and globally synchronous changes in climate.. Quaternary Research 56, 289298.CrossRefGoogle Scholar
Jouzel, J., Lorius, C., Petit, J.R., Genthon, C., Barkov, N.I., Kotlyakov, V.M., Petrov, V.M.(1987). Vostok ice core–"a continuous isotope temperature record over the last climatic cycle (160,000 years).. Nature 329, 403408.CrossRefGoogle Scholar
Kavanaugh, J.L., Cuffey, K.M., (2003). Space and time variation of delta 18-O and delta D in Antarctic precipitation revisited.. Global Biogeochemical Cycles 17, 1017 10.1029/2002GB001910.CrossRefGoogle Scholar
Kavanaugh, J., Cuffey, K., Morse, D. in preparation.Ice dynamics of Taylor Glacier, Antarctica.. v.Google Scholar
Marvin, U.B. (1986). Components of dust bands in ice from cul de sac, Allan Hills Region, Antarctica.. Meteoritics 21, 442443.Google Scholar
Morse, D.L., Waddington, E.D., Steig, E.J.(1998). Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica.. Geophysical Research Letters 25, 33833386.CrossRefGoogle Scholar
Morse, D.L., Waddington, E.D., Marshall, H.P., Neumann, T.A., Steig, E.J., Dibb, J.E., Winebrenner, D.P., Arthern, R.J.(1999). Accumulation rate measurements at Taylor Dome, East Antarctica: techniques and strategies for mass balance measurements in polar environments.. Geografiska Annaler Series a-Physical Geography 81A, 683694.CrossRefGoogle Scholar
D.L., Morse, E.D., Waddington, L.A., Rasmussen in press.Ice deformation in the vicinity of the ice core site at Taylor Dome, Antarctica, and a derived accumulation rate history: Journal of Glaciology.. Google Scholar
Mulvaney, R., Rothlisberger, R., Wolff, E.W., Sommer, S., Schwander, J., Hutteli, M.A., Jouzel, J.(2000). The transition from the last glacial period in inland and near-coastal Antarctica.. Geophysical Research Letters 27, 26732676.CrossRefGoogle Scholar
Neumann, T.A., Waddington, E.D., Steig, E.J., Grootes, P.M.(2005). Non-climate influences on stable isotopes at Taylor Mouth, Antarctica.. Journal of Glaciology 51, 248258.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Pourchet, M., Merlivat, L.(1982). A detailed study of snow accumulation and stable isotope content in dome-C (Antarctica).. Journal of Geophysical Research-Oceans and Atmospheres 87, 43014308.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M.(1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica.. Nature 399, 429436.CrossRefGoogle Scholar
Petrenko, V.V., Severinghaus, J., Brook, E., Reeh, N., Schaefer, H.(2006). Gas records from the West Greenland ice margin covering the last glacial termination: a horizontal ice core.. Quaternary Science Reviews 25, 865875.CrossRefGoogle Scholar
Popp, T.J., Sowers, T., Dunbar, N.W., McIntosh, W.C., White, J.W.C.(2004). Radioisotopically dated climate record spanning the last interglacial in ice from Mount Moulton, West Antarctica.. AGU Fall Meeting Abstract, v. U31A-0015.Google Scholar
Reeh, N., Oerter, H., Letreguilly, A., Miller, H., Hubberten, H.W.(1991). A new, detailed Ice-Age O-18 record from the ice-sheet margin in central West Greenland.. Global And Planetary Change 90, 373383.CrossRefGoogle Scholar
Reeh, N., Oerter, H., Thomsen, H.H.(2002). Comparison between Greenland ice-margin and ice-core oxygen-18 records.. Global And Planetary Change 35, 136144.Google Scholar
Robinson, P.H. (1984). Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica.. Journal Of Glaciology 30, 153160.CrossRefGoogle Scholar
Schaefer, H., Whiticar, M.J., Brook, E.J., Petrenko, V.V., Ferretti, D.F., Severinghaus, J.P.(2006). Ice record of delta C-13 for atmospheric CH4 across the Younger Dryas-Preboreal transition.. Science 313, 11091112.CrossRefGoogle Scholar
Schwander, J., Sowers, T., Barnola, J.M., Blunier, T., Fuchs, A., Malaize, B.(1997). Age scale of the air in the summit ice: implication for glacial–"interglacial temperature change.. Journal Of Geophysical Research-Atmospheres 102, 1948319493.CrossRefGoogle Scholar
Sowers, T., Bender, M., Raynaud, D.(1989). Elemental and isotopic composition of occluded O2 and N2 in polar ice.. Journal of Geophysical Re- search 94, 51375150.CrossRefGoogle Scholar
Sowers, T., Alley, R.B., Jubenville, J.(2003). Ice core records of atmospheric N2O covering the last 106,000 years.. Science 301, 945948.CrossRefGoogle Scholar
Steig, E.J., Brook, E.J., White, J.W.C., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse, D.L., Waddington, E.D., Clow, G.D.(1998). Synchronous climate changes in Antarctica and the North Atlantic.. Science 282, 9295.CrossRefGoogle ScholarPubMed
Steig, E.J., Morse, D.L., Waddington, E.D., Stuiver, M., Grootes, P.M., Mayewski, P.A., Twickler, M.S., Whitlow, S.I.(2000). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica.. Geografiska Annaler Series A-Physical Geography 82A, 213235.CrossRefGoogle Scholar
Tschumi, Jrg, Stauffer, Bernhard(2000). Reconstructing past atmospheric CO2 concentration based on ice-core analyses: open questions due to in situ production of CO2 in the ice.. Journal Of Glaciology 46, 4553.CrossRefGoogle Scholar
Whillans, I.M., Cassidy, W.A.(1983). Catch a falling star–"meteorites and old ice.. Science 222, 5557.CrossRefGoogle ScholarPubMed
Wilch, T.I., McIntosh, W.C., Dunbar, N.W.(1999). Late Quaternary volcanic activity in Marie Byrd Land: potential Ar-40/Ar-39-dated time horizons in West Antarctic ice and marine cores.. Geological Society of America Bulletin 111, 15631580.2.3.CO;2>CrossRefGoogle Scholar