Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T12:19:37.291Z Has data issue: false hasContentIssue false

Paleomagnetic data from volcanic rocks in the southern Central Andes of Argentina and their implications for tectonics and geomagnetic field behavior

Published online by Cambridge University Press:  14 January 2025

M.L. Perez*
Affiliation:
Universidad de Buenos Aires, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET, Buenos Aires, CP 1428, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, CP 1425, Argentina
F.N. Milanese
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, CP 1425, Argentina Instituto Antártico Argentino (IAA), San Martín, CP 1650, Argentina
S.E. Geuna
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, CP 1425, Argentina Instituto de Bio y Geociencias del NOA (IBIGEO), Universidad Nacional de Salta, CONICET, Salta, CP 4405, Argentina
P.R. Franceschinis
Affiliation:
Universidad de Buenos Aires, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET, Buenos Aires, CP 1428, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, CP 1425, Argentina
C. Puigdomenech
Affiliation:
Instituto Antártico Argentino (IAA), San Martín, CP 1650, Argentina
A. Folguera
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, CP 1425, Argentina Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN)–(UBA-CONICET), Buenos Aires, CP 1428, Argentina
A.E. Rapalini
Affiliation:
Universidad de Buenos Aires, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), CONICET, Buenos Aires, CP 1428, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, CP 1425, Argentina
*
Corresponding author: M. L. Perez; Email: [email protected]

Abstract

A paleomagnetic study of basaltic lava flows exposed in the northern Neuquén Cordillera, southernmost Central Andes, along the Antiñir-Copahue fault zone (ACFZ), involved 25 sites of the Cola de Zorro Formation (Pliocene–Early Pleistocene) along two different sections. The sites show exclusive normal polarity, corresponding to the Late Pliocene Gauss chron (3.6–2.6 Ma). The angular standard deviation of virtual geomagnetic poles (VGPs; ASD = 14.8°) is consistent with the expected values from recent geomagnetic models, in opposition to anomalously low dispersion found in previous studies in Pleistocene VGPs of reverse polarity from neighboring areas to our study zone. Mean paleomagnetic directions for Bella Vista (Dec = 0.0°, Inc = −50.0°, α₉₅ = 7.6°, K = 36.7, N = 11) and Río Huaraco sections (Dec = 354.9°, Inc = −57.0°, α₉₅ = 7.5°, K = 55.7, N = 8) do not show tectonic rotation around vertical axes. Combining and regrouping our and previous data by area confirmed the absence of tectonic rotations in the Huaraco-Trohunco block and a statistically significant clockwise rotation of 14.4° ± 10.3° of three adjacent tectonic blocks located south of our study locality in Pleistocene times. These results suggest that strike-slip deformation along some sections of the ACFZ was significant in the Pleistocene structural evolution of this region.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beck, M.E. Jr., 1989. Paleomagnetism of continental North America; implications for displacement of crustal blocks within the Western Cordillera, Baja California to British Columbia. Geological Society of America Memoirs 172, 471492.CrossRefGoogle Scholar
Beck, M.E. Jr., Burmester, R.F., Cembrano, J., Drake, R., García, A.R., Hervé, F., Munizaga, F., 2000. Paleomagnetism of the North Patagonian batholith, southern Chile. An exercise in shape analysis. Tectonophysics 326, 185202.Google Scholar
Bono, R.K., Biggin, A.J., Holme, R., Davies, C.J., Meduri, D.G., Bestard, J., 2020. Covariant giant gaussian process models with improved reproduction of palaeosecular variation. Geochemistry, Geophysics, Geosystems 21, e2020GC008960.CrossRefGoogle Scholar
Brandt, D., Constable, C., Ernesto, M., 2020. Giant Gaussian process models of geomagnetic paleosecular variation: a directional outlook. Geophysical Journal International 22, 15261541.CrossRefGoogle Scholar
Brown, L.L., Singer, B.S., Pickens, J.C., Jicha, B.R., 2004. Paleomagnetic directions and 40Ar/39Ar ages from the Tatara-San Pedro volcanic complex, Chilean Andes: lava record of a Matuyama-Brunhes precursor? Journal of Geophysical Research: Solid Earth 109(B12). https://doi.org/10.1029/2004JB003007.CrossRefGoogle Scholar
Burns, W.M., Jordan, T.E., Copeland, P., Kelley, S.A., 2006. The case for extensional tectonics in the Oligocene-Miocene Southern Andes as recorded in the Cura Mallin basin (36°-38°S). Special Paper of the Geological Society of America 407, 163184.Google Scholar
Cañón-Tapia, E., Herrero-Bervera, E., Walker, G., 1994. Flow directions and paleomagnetic study of rocks from the Azufre Volcano, Argentina. Journal of Geomagnetism and Geoelectricity 46, 143159.CrossRefGoogle Scholar
Cembrano, J., Beck, M.E. Jr., Burmester, R.F., Rojas, C., García, A.R., Hervé, F., 1992. Paleomagnetism of Lower Cretaceous rocks from east of the Liquine-Ofqui fault zone, southern Chile: evidence of small in-situ clockwise rotations. Earth and Planetary Science Letters 113, 539551.CrossRefGoogle Scholar
Cembrano, J., Hervé, F., 1993. The Liquiñe Ofqui fault zone: a major Cenozoic strike-slip duplex in the southern Andes. In: International Symposium on Andean Geodynamics (No. 2, pp. 175178), Ed. de l'ORSTOM, Paris.Google Scholar
Cembrano, J., Hervé, F., Lavenu, A., 1996. The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259, 5566.CrossRefGoogle Scholar
Cembrano, J., Lara, L., 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471, 96113.CrossRefGoogle Scholar
Cembrano, J., Schermer, E., Lavenu, A., Sanhueza, A., 2000. Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes. Tectonophysics 319, 129149.CrossRefGoogle Scholar
Chadima, M., Cajz, V., Týcová, P., 2009. On the interpretation of normal and inverse magnetic fabric in dikes: examples from the Eger Graben, NW Bohemian Massif. Tectonophysics 466, 4763.CrossRefGoogle Scholar
Colavitto, B., Sagripanti, L., Jagoe, L., Costa, C., Folguera, A., 2020. Quaternary tectonics in the southern Central Andes (37°-38° S): retroarc compression inferred from morphotectonics and numerical models. Journal of South American Earth Sciences 102, 102697.CrossRefGoogle Scholar
Dearing, J.A., Hay, K.L., Baban, S.M., Huddleston, A.S., Wellington, E.M., Loveland, P., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127, 728734.CrossRefGoogle Scholar
Demarest, H.H. Jr., 1983. Error analysis for the determination of tectonic rotation from paleomagnetic data. Journal of Geophysical Research 88(B5), 43214328.CrossRefGoogle Scholar
de Oliveira, W.P., Hartmann, G.A., Terra-Nova, F., Brandt, D., Biggin, A.J., Engbers, Y.A., Moncinhatto, T.R., 2021. Paleosecular variation and the time-averaged geomagnetic field since 10 ma. Geochemistry, Geophysics, Geosystems 22, e2021GC010063.CrossRefGoogle Scholar
Escosteguy, L.D., Geuna, S.E., Fauqué, L., 1999. La avalancha de rocas del Moncol, Cordillera Principal (Provincia de Neuquén, República Argentina). In: XIV Congreso Geológico Argentino. Universidad Nacional de Salta, Salta, pp. 6770.Google Scholar
Folguera, A., Ramos, V.A., Díaz, E. F. G., Hermanns, R., 2006. Miocene to Quaternary deformation of the Guañacos fold-and-thrust belt in the Neuquén Andes between 37° S and 37° 30′ S. Geological Society of America Special Paper 407, 247266.Google Scholar
Folguera, A., Ramos, V.A., Hermanns, R.L., Naranjo, J., 2004. Neotectonics in the foothills of the southernmost central Andes (37°–38° S): evidence of strike-slip displacement along the Antiñir-Copahue fault zone. Tectonics 23, 123.CrossRefGoogle Scholar
Folguera, A., Ramos, V.A., Melnick, D., 2003. Recurrencia en el desarrollo de cuencas de intraarco: Cordillera Neuquina (37° 30´-38° S). Revista de la Asociación Geológica Argentina 58, 319.Google Scholar
Folguera, A., Ramos, V.A., Zapata, T., Spagnuolo, M.G., 2007. Andean evolution at the Guañacos and Chos Malal fold and thrust belts (36°-37°S). Journal of Geodynamics 44, 129148.CrossRefGoogle Scholar
Folguera, A., Rojas Vera, E., Spagnuolo, M., Orts, D., Sagripanti, L., Mariot, M., Ramos, M.E., Bottesi, G., Ramos, V.A., 2011. Los Andes Neuquinos. Geología y Recursos Naturales de la provincia de Neuquén. In: XVIII Congreso Geológico Argentino, Relatorio XVIII, pp. 349354.Google Scholar
Folguera, A., Yagupsky, D., Melnick, D., 2002. Formación de la Cuenca de Cola de Zorro (5 Ma). Cordillera Neuquina-X Región. Origen y emplazamiento del volcanismo plioceno inferior entre 36° y 39°S. In Congreso Geológico Argentino (No. 15).Google Scholar
García, A.R., Beck, M.E. Jr., Burmester, R.F., Munizaga, F., Hervé, F., 1988. Paleomagnetic reconnaissance of the region de Los Lagos, southern Chile, and its tectonic implications. Revista Geológica de Chile 15, 1330.Google Scholar
Garfunkel, Z., 1989. Regional Deformation by Block Translation and Rotation. In: Kissel, C., Laj, C. (Eds.), Paleomagnetic Rotations and Continental Deformation. NATO ASI Series, Series C: Mathematical and Physical Science 254. Springer, Dordrecht, Netherlands, pp. 181208.CrossRefGoogle Scholar
Geissman, J. W., Van der Voo, R., 1980. Thermochemical remanent magnetization in Jurassic silicic volcanics from Nevada, USA. Earth and Planetary Science Letters 48, 385396.CrossRefGoogle Scholar
González Ferrán, O., Vergara Martínez, M., 1962. Reconocimiento Geológico de la cordillera de los Andes entre los paralelos 35° y 38°S. Universidad de Chile, Instituto de Geología, Santiago de Chile.Google Scholar
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., 2020. Geologic Time Scale 2020. Vol. 1. Elsevier, Amsterdam.Google Scholar
Hernandez-Moreno, C., Speranza, F., Di Chiara, A., 2014. Understanding kinematics of intra-arc transcurrent deformation: paleomagnetic evidence from the Liquiñe-Ofqui fault zone (Chile, 38–41° S). Tectonics 33, 19641988.CrossRefGoogle Scholar
Hernandez-Moreno, C., Speranza, F., Di Chiara, A., 2016. Paleomagnetic rotation pattern of the southern Chile fore-arc sliver (38 S–42 S): a new tool to evaluate plate locking along subduction zones. Journal of Geophysical Research: Solid Earth 121, 469490.CrossRefGoogle Scholar
Hrouda, F., 2011. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophysical Journal International 187, 12591269.CrossRefGoogle Scholar
Jordan, T., Burns, W., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., Mpodozis, C., 2001. Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20, 308324.CrossRefGoogle Scholar
Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal International 62, 699718.CrossRefGoogle Scholar
Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., Bataille, K., 2008. First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455, 1424.CrossRefGoogle Scholar
Leonhardt, R., Matzka, J., Menor, E., 2003. Absolute paleointensities and paleodirections of Miocene and Pliocene lavas from Fernando de Noronha, Brazil. Physics of the Earth and Planetary Interiors 139, 285303.CrossRefGoogle Scholar
Linares, E., Ostera, H.A., Mas, L.C., 1999. Cronología potásio-argón del Complejo Efusivo Copahue-Caviahue, Provincia del Neuquén. Revista de la Asociación Geológica Argentina 54, 240247.Google Scholar
Lopez-Escobar, L., Vergara, M., Frey, F.A., 1981. Petrology and geochemistry of lavas from Antuco volcano, a basaltic volcano of the Southern Andes (37° 25’S). Journal of Volcanology and Geothermal Research 11, 329–331, 335352.CrossRefGoogle Scholar
McFadden, P., Merrill, R., McElhinny, M., 1988. Dipole/quadrupole family modeling of paleosecular variation. Journal of Geophysical Research: Solid Earth 93(B10), 1158311588.CrossRefGoogle Scholar
Mejia, V., Opdyke, N., Vilas, J., Singer, B., Stoner, J., 2004. Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows. Geochemistry, Geophysics, Geosystems 5(3). https://doi.org/10.1029/2003GC000633.CrossRefGoogle Scholar
Melnick, D., Rosenau, M., Folguera, A., Echtler, H., 2006. Neogene tectonic evolution of the Neuquén Andes western flank (37-39°S). Geological Society of America Special Paper 407, 7393.Google Scholar
Milanese, F.N., Rapalini, A.E., Sagripanti, L., Geuna, S., Dekkers, M.J., Feo, R., Folguera, A., 2023. New and revised paleomagnetic data from the southern central Andes: testing tectonic rotations. Journal of South American Earth Sciences 124, 104220.CrossRefGoogle Scholar
Moncinhatto, T.R., de Oliveira, W.P., Haag, M.B., Hartmann, G.A., Savian, J.F., Poletti, W., Trindade, R.I., 2023. Palaeosecular variation in Northern Patagonia recorded by 0–5 Ma Caviahue–Copahue lava flows. Geophysical Journal International 234, 16401654.CrossRefGoogle Scholar
Niemeyer, H., Muñoz, J., 1983. Geología de la Hoja Laguna de la Laja, Región del Bío Bío, Escala 1:250.000. Carta N° 57. Servicio Nacional de Geología y Minería de Chile, Santiago.Google Scholar
Nur, A., Ron, H., 2003. Material and stress rotations: the key to reconciling crustal faulting complexity with rock mechanics. International Geology Review 45, 671690.CrossRefGoogle Scholar
Opdyke, N.D., Hall, M., Mejia, V., Huang, K., Foster, D.A., 2006. Time averaged field at the equator: results from Ecuador. Geochemistry, Geophysics, Geosystems 7(11). https://doi.org/10.1029/2005GC001221.CrossRefGoogle Scholar
Penna, I., 2010. Procesos de remoción en masa en el retroarco norneuquino (37°–38° S): factores condicionantes y sus implicancias en el modelado del paisaje. Doctoral thesis. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires.Google Scholar
Penna, I.M., Hermanns, R.L., Niedermann, S., Folguera, A., 2011. Multiple slope failures associated with neotectonic activity in the Southern Central Andes (37°-37°30’S), Patagonia, Argentina. GSA Bulletin 123, 18801895.CrossRefGoogle Scholar
Quidelleur, X., Carlut, J., Tchilinguirian, P., Germa, A., Gillot, P., 2009. Paleomagnetic directions from mid-latitude sites in the Southern Hemisphere (Argentina): contribution to time averaged field models. Physics of the Earth and Planetary Interiors 172, 199209.CrossRefGoogle Scholar
Ramos, V.A., Mosquera, A., Folguera, A., García Morabito, E., 2011. Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In: Geología y Recursos Naturales de la provincia del Neuquén. Relatorio del VXIII Congreso Geológico Argentino, Buenos Aires, pp. 335348.Google Scholar
Rojas, C., Beck, M.E. Jr., Burmester, R. F., Cembrano, J., Hervé, F., 1994. Paleomagnetism of the mid-Tertiary Ayacara Formation, southern Chile: counterclockwise rotation in a dextral shear zone. Journal of South American Earth Sciences 7, 4556.CrossRefGoogle Scholar
Rojas Vera, E., Orts, D.L., Folguera, A., Zamora Valcarce, G., Bottesi, G., Fennell, L., Chiachiarelli, F., Ramos, V.A., 2016. The transitional zone between the southern central and northern Patagonian Andes (36°–39° S). In: Folguera, A., Naipauer, M., Sagripanti, L., Ghiglione, M.C., Orts, D.L., Giambiagi, L. (Eds.), Growth of the Southern Andes. Springer, Cham, Switzerland, pp. 99114.CrossRefGoogle Scholar
Roperch, P., Chauvin, A., Lara, L. E., Moreno, H., 2015. Secular variation of the Earth's magnetic field and application to paleomagnetic dating of historical lava flows in Chile. Physics of the Earth and Planetary Interiors 242, 6578.CrossRefGoogle Scholar
Rosselot, E.A., Hurley, M., Sagripanti, L., Fennell, L., Iannelli, S.B., Orts, D., Folguera, A., 2020. Tectonics associated with the Late Oligocene to Early Miocene units of the high Andes (Cura-Mallín Formation). A review of the geochronological, thermochronological, and geochemical data. In: Kietzmann, D., Folguera, A. (Eds.), Opening and Closure of the Neuquén Basin in the Southern Andes. Springer, Cham, Switzerland, pp. 431448.CrossRefGoogle Scholar
Rovere, E., Caselli, A., Tourn, S., Leanza, H.A., Hugo, C.A., Folguera, A., Escosteguy, L., et al., 2004. Hoja Geológica 3772-IV, Andacollo, provincia del Neuquén. Boletín 298. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires.Google Scholar
Sagripanti, L., Colavitto, B., Jagoe, L., Folguera, A., Costa, C., 2018. A review about the Quaternary upper-plate deformation in the Southern Central Andes (36–38°S): a plausible interaction between mantle dynamics and tectonics. Journal of South American Earth Sciences 87, 221231.CrossRefGoogle Scholar
Sánchez-Duque, A., Mejia, V., Opdyke, N., Huang, K., Rosales-Rivera, A., 2016. Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia. Geochemistry, Geophysics, Geosystems 17, 538549.CrossRefGoogle Scholar
Siravo, G., Speranza, F., Hernandez-Moreno, C., Di Chiara, A., 2020. Orogen-parallel transition from a decoupled fore-arc sliver to Andean-type mountain chain: paleomagnetic and geologic evidence from southern Chile (37–39°S). Tectonics 39, e2019TC005881.CrossRefGoogle Scholar
Suárez, M., Emparán, C., 1997. Hoja Curacautín 71, Regiones de la Araucanía y del Bío Bío: escala 1:250.000. Servicio Nacional de Geología y Mineria de Chile, Santiago, p. 105.Google Scholar
Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., Cocks, L.R.M., 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114, 325368.CrossRefGoogle Scholar
Vergara Martínez, M., Muñoz Bravo, J., 1982. La Formación Cola de Zorro en la alta Cordillera Andina Chilena (36°-39°Lat. S), sus características petrográficas y petrológicas: una revisión. Revista Geológica de Chile 17, 3146.Google Scholar
Watson, G.S., 1956. A test for randomness of directions. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society 7, 160161.CrossRefGoogle Scholar
Zijderveld, J.D.A., 1967. A. C. demagnetization of rocks: analysis of results. In: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods in Palaeomagnetism. Elsevier, Amsterdam, pp. 254286. https://doi.org/10.1016/b978-1-4832-2894-5.50049-5.Google Scholar
Zuza, A.V., Yin, A., 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: an example from the Cenozoic tectonic development of northern Tibet. Tectonophysics 677, 227240.CrossRefGoogle Scholar