Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T20:17:51.011Z Has data issue: false hasContentIssue false

Paleo-climate of the central European uplands during the last glacial maximum based on glacier mass-balance modeling

Published online by Cambridge University Press:  20 January 2017

Barbara M. Heyman
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
Jakob Heyman*
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
Thomas Fickert
Affiliation:
Department of Physical Geography, University of Passau, Innstrasse 40, 94032 Passau, Germany
Jonathan M. Harbor
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
*
*Corresponding author. E-mail address:[email protected] (J. Heyman).

Abstract

During the last glacial maximum (LGM), glaciers existed in scattered mountainous locations in central Europe between the major ice masses of Fennoscandia and the Alps. A positive degree-day glacier mass-balance model is used to constrain paleo-climate conditions associated with reconstructed LGM glacier extents of four central European upland regions: the Vosges Mountains, the Black Forest, the Bavarian Forest, and the Giant Mountains. With reduced precipitation (25–75%), reflecting a drier LGM climate, the modeling yields temperature depressions of 8–15°C. To reproduce past glaciers more severe cooling is required in the west than in the east, indicating a strong west–east temperature anomaly gradient.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R., Siegert, M., and Payne, A.J. Reconstructing glacier-based climates of LGM Europe and Russia – Part 1: numerical modelling and validation methods. Climate of the Past 4, (2008). 235248.Google Scholar
Allen, R., Siegert, M., and Payne, A.J. Reconstructing glacier-based climates of LGM Europe and Russia – Part 2: a dataset of LGM precipitation/temperature relations derived from degree-day modelling of paleo glaciers. Climate of the Past 4, (2008). 249263.Google Scholar
Braithwaite, R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. Journal of Glaciology 41, (1995). 153160.CrossRefGoogle Scholar
Braithwaite, R.J. Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow. Journal of Glaciology 54, (2008). 437444.Google Scholar
Carr, S., Engel, Z., Kalvoda, J., and Parker, A. Sedimentary evidence for extensive glaciation of the Úpa valley, Krkonose Mountains, Czech Republic. Zeitschrift für Geomorphologie 46, (2002). 523537.Google Scholar
Carr, S., Engel, Z., Kalvoda, J., and Parker, A. Towards a revised model of Quaternary mountain glaciation in the Krkonoše Mountains, Czech Republic. Goudie, A.S., and Kalvoda, J. Geomorphological Variations P3K Press. (2007). 253268.Google Scholar
Chmal, H., and Traczyk, W. Die Vergletscherung des Riesengebirges. Zeitschrift für Geomorphologie NF Suppl-Bd 113, (1999). 1117. [in German] Google Scholar
Ehlers, J., and Gibbard, P.L. Quaternary Glaciations – Extent and Chronology, Part I: Europe. (2004). Elsevier Science, Google Scholar
Ehlers, J., and Gibbard, P.L. Extent and chronology of Cenozoic Global Glaciation. Quaternary International 164–165, (2007). 620.Google Scholar
Engel, Z., Traczyk, A., Braucher, R., Woronko, B., and Křížec, M. Use of 10Be exposure ages and Schmidt hammer data for correlation of moraines in the Krkonoše Mountains, Poland/Czech Republic. Zeitschrift für Geomorphologie 55, (2011). 175196.Google Scholar
Ergenzinger, P. Die eiszeitliche Vergletscherung des Bayerischen Waldes. Eiszeitalter und Gegenwart 18, (1967). 152168. [in German] Google Scholar
Fiebig, M., Buiter, S.J.H., and Ellwanger, D. Pleistocene glaciations of South Germany. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations – Extent and Chronology, Part I: Europe. (2004). Elsiever, 147154.Google Scholar
Florineth, D., and Schlüchter, C. Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quaternary Research 54, (2000). 295308.Google Scholar
Hauner, U. Untersuchungen zur klimagesteuerten tertiären und quartären Morphogenese des Inneren Bayerischen Waldes (Rachel – Lusen) unter besonderer Berücksichtigung pleistozäner kaltzeitlicher Formen und Ablangerungen. Regensburger Geographische Schriften 14, (1980). [in German] Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, (2005). 19651978.Google Scholar
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P.J., and Ramstein, G. High resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental paleoclimatic reconstructions?. Climate Dynamics 24, (2005). 577590.CrossRefGoogle Scholar
Kageyama, M., Peyron, O., Pinot, S., Tarasov, P., Guiot, J., Joussaume, S., Ramstein, G. PMIP participating groups The Last Glacial Maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Climate Dynamics 17, (2001). 2343.CrossRefGoogle Scholar
Kageyama, M., Lainé, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C.D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Melé, A., Vettoretti, G., Weber, S.L., and Yu, Y. Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quaternary Science Reviews 25, (2006). 20822102.CrossRefGoogle Scholar
Kern, Z., and László, P. Size specific steady-state accumulation-area ratio: an improvement for equilibrium-line estimation of small palaeoglaciers. Quaternary Science Reviews 29, (2010). 27812787.Google Scholar
Laumann, T., and Reeh, N. Sensitivity to climate change of the mass balance of glaciers in southern Norway. Journal of Glaciology 39, (1993). 656665.CrossRefGoogle Scholar
Meierding, T.C. Late Pleistocene glacial equilibrium-line altitudes in the Colorado Front Range: a comparison of methods. Quaternary Research 18, (1982). 289310.Google Scholar
Mercier, J.-L., and Jeser, N. The glacial history of the Vosges Mountains. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations – Extent and Chronology, Part I: Europe. (2004). Elsiever, 113118.Google Scholar
Mercier, J.-L., Bourlès, D.L., Kalvoda, J., Braucher, R., and Paschen, A. Deglaciation of the Vosges dated using 10Be. Acta Universitatis Carolinae – Geographica 2, (1999). 139155.Google Scholar
Mercier, J.-L., Kalvoda, J., Bourlès, D.L., Braucher, R., and Engel, Z. Preliminary results of 10Be dating of glacial landscape in the Giant Mountains. Acta Universitatis Carolinae – Geographica 35, (2000). 157170. (Suppl.) Google Scholar
Partsch, J. Die Vergletscherung des Riesengebirges zur Eiszeit. Forschungen zur Deutschen Landes- und Volkskunde VIII/2, (1894). 103194.Google Scholar
Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W. Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters 31, (2004). L21402 Google Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., and Andrieu, V. Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research 49, (1998). 183196.Google Scholar
Raab, T., and Völkel, J. Late Pleistocene glaciation of the Kleiner Arbersee area in the Bavarian Forest, south Germany. Quaternary Science Reviews 22, (2003). 581593.CrossRefGoogle Scholar
Ramstein, G., Kageyama, M., Guiot, J., Wu, H., Hély, C., Krinner, G., and Brewer, S. How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison. Climate of the Past 3, (2007). 331339.Google Scholar
Raup, B., Racoviteanu, A., Khalsa, S.J.S., Helm, C., Armstrong, R., and Arnaud, Y. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change 56, (2007). 101110.CrossRefGoogle Scholar
Strandberg, G., Brandefelt, J., Kjellström, E., and Smith, B. High-resolution regional simulation of the last glacial maximum climate in Europe. Tellus 63A, (2011). 107125.Google Scholar
Tarasov, P.E., Peyron, O., Guiot, J., Brewer, S., Volkova, V.S., Bezusko, L.G., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M., and Panova, N.K. Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and macrofossil data. Climate Dynamics 15, (1999). 227240.Google Scholar
Wright, H.E. Late Pleistocene climate of Europe: a review. Geological Society of America Bulletin 72, (1961). 933984.Google Scholar