Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T03:23:41.421Z Has data issue: false hasContentIssue false

Oxygen isotopes of bovid teeth as archives of paleoclimatic variations in archaeological deposits of the Ganga plain, India

Published online by Cambridge University Press:  20 January 2017

Shikha Sharma*
Affiliation:
Institut für Geologie und Mineralogie, Universität Erlangen–Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany Department of Geology, Lucknow University, Lucknow 226007, India
Michael M Joachimski
Affiliation:
Institut für Geologie und Mineralogie, Universität Erlangen–Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Heinz J Tobschall
Affiliation:
Institut für Geologie und Mineralogie, Universität Erlangen–Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Indra B Singh
Affiliation:
Department of Geology, Lucknow University, Lucknow 226007, India
Devi P Tewari
Affiliation:
Department of Ancient Indian History and Archaeology, Lucknow University, Lucknow 226007, India
Rakesh Tewari
Affiliation:
U.P. State Archaeological Department, Roshanud-daula Kothi, Lucknow, India
*
*Corresponding author. Present address: Department of Geological and Atmospheric Sciences, 253 Science 1, Iowa State University, Ames, IA 50011, USA. E-mail address:[email protected](S. Sharma).

Abstract

Oxygen isotope analysis was performed on enamel phosphate of mammalian teeth from archaeological sites Kalli Pachchhim and Dadupur in the central Ganga plain and Charda in the northern Ganga plain. The bulk oxygen isotopic compositions of enamel phosphate from third molars (M3) of Bos indicus individuals belonging to different cultural periods were used to understand the climatic changes during the past 3600 cal yr B.P. Oxygen isotope ratios indicate humid conditions around 3600 cal yr B.P., followed by a trend toward drier conditions until around 2800 cal yr B.P. Then from 2500 to 1500 cal yr B.P. there is a trend toward higher humidity, followed by the onset of a dry period around 1300 cal yr B.P. The study of intratooth δ18O variations in teeth from different periods demonstrates that the monsoon seasonality was prominent. Spatial changes in the amount of annual rainfall are also reflected in the δ18O values. Teeth derived from areas with intense rainfall have lighter isotope ratios compared to teeth from regions receiving less rain, but they show similar seasonal patterns. The long-term paleoclimatic variations reflected by fluctuations in bulk δ18Op values from M3 teeth match well with the regional paleoenvironmental records and show a good correlation to the cultural changes that took place during this time span in Ganga plain.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasse, M., (2002). Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarchaeology 12, 155 165.Google Scholar
Balasse, M., (2003). Potential biases in sampling design and interpretation of intra-tooth isotope analysis. International Journal of Osteoarchaeology 13, 3 10.Google Scholar
Brown, W.A.B., Christofferson, P.V., Massler, M., Weiss, M.B., (1960). Post natal tooth development in cattle. American Journal of Veterinary Research 21, 7 34.Google Scholar
Bryant, J.D., Koch, P.L., Froelich, P.N., Showers, W.J., Genna, B.J., (1996). Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochimica et Cosmochimica Acta 60, 5145 5148.Google Scholar
Bryant, J.D., Luz, B., Froelich, P.N., (1994). Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 303 316.Google Scholar
Clementz, M.T., Koch, P.L., (2001). Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461 472.Google Scholar
Crowson, R.A., Showers, W.J., Wright, E.K., Hoering, T.C., (1991). Preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63, 2397 2400.Google Scholar
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus 16, 436 468.Google Scholar
Denniston, R.F., González, L.U., Asmerom, Y., Sharma, R.H., Reagan, M.K., (2000). Speleothem evidence for changes in Indian summer monsoon precipitation over last ∼2300 years. Quaternary Research 53, 196 202.CrossRefGoogle Scholar
Dhavalikar, M.K., (2001). Green imperialism: monsoon in antiquity and human response. Man and Environment XXXVI, 18 28.Google Scholar
Feranec, R.S., MacFadden, B.J., (2000). Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 155 169.Google Scholar
Fricke, H.C., Clyde, W.C., O'Neil, J.R., (1998). Intra-tooth variations in δO18 (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62, 1839 1850.Google Scholar
Fricke, H.C., O'Neil, J.R., (1996). Inter- and intratooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 91 99.Google Scholar
Gadbury, C., Todd, L., Jahren, A.H., Amundson, R., (2000). Spatial and temporal variations in the isotopic composition of bison tooth enamel from the early Holocene Hudson–Meng bone bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 79 93.Google Scholar
Iacumin, P., Bocherens, H., Mariotti, A., Longinelli, A., (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate?. Earth Planetary Science Letters 142, 1 6.CrossRefGoogle Scholar
IAEA/WHO, , (2001). Global Network of Isotopes in Precipitation. The GNIP Database. International Atomic Energy Agency, Vienna, Austria.Accessible at http://isohis.iaea.org. Google Scholar
Kohn, M.J., (1996). Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60, 4811 4829.Google Scholar
Kohn, M.J., Schoeninger, M.J., Valley, J.W., (1998). Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology. Chemical Geology 152, 97 112.Google Scholar
Lécuyer, C., Grandjean, P., O'Neil, J.R., Capeta, H., Martineau, F., (1993). Thermal excursions in the ocean at the Cretaceous–Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 235 243.Google Scholar
Lee-Thorp, J., Sponheimer, M., (2003). Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. Journal of Anthropological Archaeology 22, 208 216.Google Scholar
Liu, K.-B., Yao, Z., Thompson, L.G., (1998). A pollen record of Holocene climatic changes from the Dunde ice cap, Quinghai–Tibetan Plateau. Quaternary Research 26, 135 138.Google Scholar
O'Neil, J.R., Roe, J.L., Reinhardt, E., Blake, R.E., (1994). A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Sciences 43, 203 212.Google Scholar
Rozanski, K., Araguas-Araguas, L., Gonfiantini, R., (1993). Isotopic patterns in modern global precipitation. Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S., Climate change in continental isotopic records, Geophysical Monograph vol. 78, American Geophysical Union, Washington, DC.1 36.Google Scholar
Sharma, S., Joachimski, M., Sharma, M., Tobschall, H.J., Singh, I.B., Sharma, C., Chauhan, M.S., Morgenroth, G., (2004). Late Glacial and Holocene environmental changes in Ganga plain, northern India. Quaternary Science Reviews 23, 139 153.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schonberg, D., McIntyre, A., Molfino, B., (1996). Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272, 526 529.Google Scholar
Sponheimer, M., Lee-Thorp, J.A., (1999). Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 120, 723 728.Google Scholar
Stuart-Williams, H., Le, Q., Schwarcz, H.P., (1997). Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel and dentine. Geochimica et Cosmochimica Acta 61, 2539 2550.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., Plicht, J.v.d., Spurk, M., (1998). Intcal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 1041 1083.Google Scholar
Vennemann, T.W., Fricke, H.C., Blake, R.E., O'Neil, J.R., Colman, A., (2002). Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4 . Chemical Geology 185, 321 336.CrossRefGoogle Scholar
Wei, K., Gasse, F., (1999). Oxygen isotopes in lacustrine carbonates of west China revisited: implications for post glacial changes in summer monsoon circulation. Quaternary Science Reviews 18, 1315 1334.Google Scholar
Wenzel, B., Lécuyer, C., Joachimski, M.M., (2000). Comparing oxygen isotope records of Silurian calcite and phosphate—δ18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta 64, 1859 1872.Google Scholar
Wiedemann, F.B., (2000). Experimental design on enamel deposition in sheep: implications for sampling strategies for stable analyses. Journal of Human Evolution 38, A34.Google Scholar
Zazzo, A., Mariotti, A., Lecuyer, C., Heintz, E., (2002). Intra-tooth isotope variations in late Miocene bovid enamel from Afghanistan: palaeobiological, taphonomic and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 145 161.CrossRefGoogle Scholar