Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T10:10:56.750Z Has data issue: false hasContentIssue false

The origin and disappearance of the late Pleistocene–early Holocene short-lived coastal wetlands along the Carmel coast, Israel

Published online by Cambridge University Press:  20 January 2017

Dorit Sivan*
Affiliation:
Department of Maritime Civilizations, School of Marine Studies and the Leon Recanati Institute for Maritime Studies (RIMS), University of Haifa, Mt. Carmel Haifa, 31905 Israel
Noam Greenbaum
Affiliation:
Department of Geography and Environmental Studies, University of Haifa, Mt. Carmel, Haifa 31905, Israel
Ronit Cohen-Seffer
Affiliation:
Department of Geography and Environmental Studies, University of Haifa, Mt. Carmel, Haifa 31905, Israel
Guy Sisma-Ventura
Affiliation:
Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, 76100 Rehovot, Israel
Ahuva Almogi-Labin
Affiliation:
Geological Survey of Israel, 30 Malchei Yisrael St., Jerusalem 95501, Israel
*
Corresponding author. Fax: + 972 4 8240493. E-mail address:[email protected] (D. Sivan).

Abstract

The formation of short-lived backswamps along the Carmel coast of Israel coincides with the rapid global sea-level rise during the late Pleistocene–early Holocene transition. The current study shows that the wetland phenomena originated around 10,000 yr ago and dried up shortly before the local Pre-Pottery Neolithic humans settled on the wetland dark clay sediments 9430 cal yr BP. Palaeontological and stable-isotope data were used in this study to elucidate previously published sedimentological reconstruction obtained from a core drilled into the western trough of the Carmel coastal plain. The water body contained typical brackish calcareous fauna, with variable numerical abundance and low species richness of ostracods and foraminifera. The δ18O and δ13C of the ostracod Cyprideis torosa show close similarity to the present Pleistocene coastal aquifer isotopic values. This study therefore concludes that the wetlands were shallow-water bodies fed by groundwater, with no evidence of sea-water mixing. It seems that they developed as the result of high groundwater levels, transportation of sediments landward, and deposition of sand bars at the paleo-river mouths. It is still not fully understood why these wetlands deteriorated abruptly and disappeared within less than 1000 yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affek, H.P., Bar-Matthews, M., Ayalon, A., Matthews, M., and Eiler, J.M. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochimica et Cosmochimica Acta 72, (2008). 53515360.Google Scholar
Almogi-Labin, A., Perelis-Grossovicz, L., and Raab, M. Note: Ammonia beccarii tepida — a doubtful indicator of a Pliocene marine ingression into the southern Jordan Valley (Israel). Israel Journal of Earth Sciences 40, (1992). 255256.Google Scholar
Almogi-Labin, A., Perelis-Grossovicz, L., and Raab, M. Living Ammonia from a hypersaline inland pool, Dead Sea area, Israel. Journal of Foraminifera Research 22, (1992). 257266.CrossRefGoogle Scholar
Almogi-Labin, A., Siman-Tov, R., Rosenfeld, A., and Debard, E. Occurrence and distribution of the foraminifer Ammonia beccarii tepida(Cushman) in water bodies, Recent and Quaternary of the Dead Sea Rift, Israel. Marine Micropaleontology 26, (1995). 153159.Google Scholar
Almogi-Labin, A., Schilman, B., and Perelis-Grossowicz, L. The brackish-water foraminifera of the inland Enot Timsah ponds, Mount Carmel coastal plain, Israel. Israel Geological Survey Current Research 13, (2002). 7985.Google Scholar
Almogi-Labin, A., Schilman, B., and Flako-Zaritsky, S. Micro-faunal ecosystem of the Timsah springs: environmental and stable isotopes characterization. Geological Survey of Israel Report GSI / 29 / 2004. (2004). 46 pp.Google Scholar
Almogi-Labin, A., Bar-Matthews, M., and Ayalon, A. Climate variability in the Levant and northeast Africa during the Late Quaternary based on marine and land records. Goren-Inbar, N., and Speth, J.D. Human paleoecology in the Levantine Corridor Oxford. (2004). Oxbow Press, 117134.Google Scholar
Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., Ayalon, A., Aizenshtat, Z., and Matthews, A. Climatic variability during the last 90 ka of the southern and northern Levantine basin as evident from marine records and speleothems. Quaternary Science Reviews 28, (2009). 28822896.Google Scholar
Anadón, P., Gilozzi, E., and Mazzini, I. Paleoenvironmental reconstruction of marginal marine environments from combined paleoecological and geochemical analyses on ostracods. Holmes, J.A., and Chivas, A.R. The Ostracoda: Applications in Quaternary Research AGU Geophysical Monograph 131. (2002). American Geophysical Union, Washington D.C.. 313 pp.Google Scholar
Athersuch, J., Home, D.J., and Whittaker, J.E. Marine and Brackish Water Ostracods (superfamilies Cypridacea and Cytheracea). Synopses of the British Fauna (New Series) No 43. Linnean Society of London and Estuarine and Coastal Sciences Association. (1989). E. J. Brill, Leiden. 343 pp.Google Scholar
Barash, A., and Danin, Z. Annotated List of Mediterranean Molluscs of Israel and Sinai. (1992). The Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar
Barash, A., and Zanzipar, L. The Mediterranean molluscs of Israel. Society for the Protection of Nature in Israel. (1991). (In Hebrew) Google Scholar
Bard, E., Hamelin, B., Fairbanks, R.G., and Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, (1990). 405409.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., and Rougerie, F. Deglacial sea level record from Tahiti corals and the timing of global melt water discharge. Nature 382, (1996). 241244.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, (1997). 155168.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmouru, M., Matthews, A., and Hawkesworth, C.J. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implication for palaeorainfall during interglacials. Geochimica et Cosmochimica Acta 67, (2003). 31813199.CrossRefGoogle Scholar
Bar-Yosef Mayer, D. The exploitation of shells as beads in the Palaeolithic and Neolithic of the Levant. Paleorient 31, (2005). 176185.CrossRefGoogle Scholar
Bermúdez, P.J. Foraminíferos de la costa norte de Cuba. Memorias de la Sociedad Cubana de Historia Natural Felipe Poey 9, (1935). 129224.Google Scholar
Bookman, R., Bartov, Y., Enzel, Y., and Stein, M. Quaternary lake levels in the Dead Sea basin: two centuries of research. Enzel, Y., Agnon, A., and Stein, M. New frontiers in Dead Sea paleoenvironmental research: Geological Society of America Special Paper 401. (2006). 155170.Google Scholar
Brückner, H., Mullenhoff, M., Handel, M., and Van Der Borg, K. Holocene landscape evolution of the Büyük Menderes alluvial plain in the environs of Myous and Priene (Western Anatolia, Turkey) — Zeitschrift für Geomorphologie N. F. Suppl.-Bd. 127. (2002). 4765. Berlin, Stuttgart Google Scholar
Chomicki, K., (2002). The paleoevolution of the ancient reservoir of Caesarea. M.Sc. thesis, McMaster University, Hamilton, Ontario.Google Scholar
Cimerman, F., and Langer, M.R. Mediterranean Foraminifera. Academica Scientarium et Aritium Slovenica, Dela, Opera 30, Classis IV: Historia Naturalis. (1991). 118 pp. 93 pl. Google Scholar
Cohen-Seffer, R., Greenbaum, N., Sivan, D., Barmeir, E., Croitoru, S., and Inbar, M. Late Pleistocene–Holocene marsh episodes along the Carmel coast, Israel. Quaternary International 140–141, (2005). 103120.Google Scholar
Cushman, J.A. Recent foraminifera from Puerto Rico. Carnegie Institute, Publication no. 344. (1926). 79 pp.Google Scholar
Cushman, J.A., and Brönnimann, P. Some new genera and species of foraminifera from brackish water of Trinidad. Contributions from the Cushman Laboratory for Foraminiferal Research 24, (1948). 1521.Google Scholar
Emeis, K.C., Sakamoto, T., Wehausen, R., and Brumsack, H.-J. The sapropel record of the eastern Mediterranean Sea — results of Ocean Drilling Program Leg 160. Palaeogeography, Palaeoclimatology, Palaeoecology (Palaeo3) 158, (2000). 371395.Google Scholar
Emeis, K.C., Schulz, H., Struck, U., Rossignol-Strick, M., Erlenkeuser, H., Howell, M.W., Kroon, D., Mackensen, A., Ishizuka, S., Oba, T., Sakamoto, T., and Koizumi, I. Eastern Mediterranean surface water temperatures and δ18O composition during deposition of sapropels in the late Quaternary. Paleoceanography 18, (2003). 10051023.CrossRefGoogle Scholar
Enzel, Y., Bookman (Ken Tor), R., Sharon, D., Gvirtzman, H., Dayan, U., Ziv, B., and Stein, M. Late Holocene climates of the Near-East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60, (2003). 263273.Google Scholar
Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., and Sharon, D. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60, (2008). 165192.Google Scholar
Fairbanks, R.G. A 17,000-year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, (1989). 637642.Google Scholar
Ferren, W.R., Fiedler, P.L. Jr., Leidy, R.A., Lafferty, K.D., and Mertes, L.A.K. Wetlands of California, part II: Classification and description of wetlands of the central and southern California coast and coastal watersheds. Madroño 43, (1996). 125182.Google Scholar
Flako-Zaritsky, S. Micro-faunal ecosystem of the Timsah springs. Geological Survey Report GSI/13/06. (2006). 85 pp.Google Scholar
Frumkin, A., Ford, D.C., and Schwarcz, H.P. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quaternary Research 51, (1999). 317327.Google Scholar
Frumkin, A., Ford, D.C., and Schwarcz, H.P. Paleoclimate and vegetation of the last glacial cycles in Jerusalem from a spelothem record. Global Biogeochemical Cycles 14, (2000). 863870.Google Scholar
Frumkin, A., Kadan, G., Enzel, Y., and Eyal, Y. Radiocarbon chronology of the Holocene Dead Sea: attempting a regional correlation. Radiocarbon 43, (2001). 11791189.Google Scholar
Galili, E., and Nir, Y. The submerged Pre-Pottery Neolithic water well of Atlit-Yam, Northern Israel, and its paleoenvironmental implications. The Holocene 3, (1993). 265270.Google Scholar
Galili, E., and Sharvit, J. Ancient coastal installations and the tectonic stability of the Israeli coast in historical times. Stewart, I.S., Vita-Finzi, C. Coastal Tectonics, Geological Society, London, Special Publications 146, (1998). 147163.Google Scholar
Galili, E., and Weinstein-Evron, M. Prehistory and Palaeoenvironments of submerged sites along the Carmel Coast of Israel. Paléorient 11, (1985). 3751.CrossRefGoogle Scholar
Galili, E., Rosen, B., Gopher, A., and Kolska-Horowitz, L. The emergence and dispersion of eastern Mediterranean fishing village: evidence from submerged Neolithic settlement off the Carmel coast, Israel. Journal of Mediterranean Archaeology 15, (2002). 167198.CrossRefGoogle Scholar
Galili, E., Zviely, D., and Weinstein-Evron, M. Holocene sea level changes and landscape evolution in the northern Carmel coast (Israel). Méditerranée: Revue Geographique des pays Méditerranéens 104, (2005). 7986.CrossRefGoogle Scholar
Galili, E., Zviely, D., Ronen, A., and Mienis, H.K. Beach deposits of MIS 5e high sea stand as indicators for tectonic stability of the Carmel coastal plain, Israel. Quaternary Science Reviews 26, (2007). 25442557.Google Scholar
Giusti, F., Manganelli, G., and Schembri, P.J. The non-marine molluscs of the Maltese islands. Museo Regionale di Scienze Naturali, monografie 15, Torino, Italy. (1995). 607 pp.Google Scholar
Guttman, J., (1998). Defining flow systems and groundwater interactions in the multi-aquifer system of the Carmel Coast region. Ph.D. thesis, Tel Aviv University, and also “Mekorot” Report No. 467 (In Hebrew) Google Scholar
Hayward, B.W., Holzmann, M., Grenfell, H.R., Pawlowski, J., and Triggs, C.M. Morphological distinction of molecular types in Ammonia — towards a taxonomic revision of the world's most commonly misidentified foraminifera. Marine Micropaleontology 952, (2003). 135.Google Scholar
Heller, J., and Farstey, V. Sexual and parthenogenetic populations of the freshwater snail Melanoides tuberculata in Israel. Israel Journal of Zoology 37, (1990). 7587.Google Scholar
Henderson, P.A. Fresh water Ostracods. (1990). The Linnean Society of London and the Estuarine and Coastal Science Association Universal Book Services/Dr. W. Backhuys, Oegstgeest, The Netherlands.Google Scholar
Hyams-Kaphzan, O., Almogi-Labin, A., Sivan, D., and Benjamini, C. Benthic foraminifera assemblage change along the southeastern Mediterranean inner shelf due to fall-off of Nile-derived siliciclastics. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen 248, (2008). 315344.Google Scholar
Inbar, M., and Sivan, D. Paleo-urban development and Late Quaternary environmental change in the Akko area. Paléorient 9/2, (1984). 8591.Google Scholar
Ingram, B.L., Ingle, J.C., and Conrad, M.E. Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay, California. Earth Planetary Science Letters 141, (1996). 237247.CrossRefGoogle Scholar
Jorissen, F.J. Benthic foraminifera from the Adriatic Sea; Principles of phenotypic variation. Utrecht Micropaleontological Bulletin 37, (1988). Google Scholar
Kadosh, D., Sivan, D., Kutiel, H., and Evron-Weinstein, M. Late Quaternary environmental changes based on stratigraphy and palynological data obtained from Dor, Carmel coast, Israel. Palynology 28, (2004). 143157.Google Scholar
Kallel, N., Paterne, M., Duplessy, J.C., Vergnaud-Grazzini, C., Pujol, C., Labeyrie, L., Arnold, M., Fontugne, M., and Pierre, C. Enhanced rainfall in the Mediterranean region during the last sapropel event. Oceanologica Acta 20, (1997). 697712.Google Scholar
Kislev, M.E., Hartmann, A., and Galili, E. Archaeobotanical and archaeoentomological evidence from a well at Atlit-Yam indicates colder, more humid climate on the Israeli coast during the PPNC period. Journal of Archaeological Science 31, (2004). 13011310.Google Scholar
Klein, R.T., Lohman, K.C., and Thaler, C.W. Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24, (1996). 415418.Google Scholar
Klein, R.T., Lohman, K.C., and Thaler, C.W. Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: Covariation with metabolic rate, salinity and carbon isotopic composition of seawater. Geochimica et Cosmochimica Acta 60, (1996). 42074221.Google Scholar
Kraft, J.C., Kayan, I., Bruckner, H., and Rapp, H.G. Sedimentary facies patterns and the interpretation of paleogeographies of ancient Troia. Wagner, G.A., Pernicka, E., Uerpmann, Troia and the Troad — Scientific Approaches. Springer Series Natural Science in Archaeology. Berlin; Heidelberg, New York (2003). 361377.Google Scholar
Lambeck, K., and Bard, E. Sea-level change along the French Mediterranean coast since the time of the Last Glacial Maximum. Earth and Science Planetary Letters 175, (2000). 203222.CrossRefGoogle Scholar
Lambeck, K., and Purcell, A. Sea-level change in the Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quaternary Science Reviews 24, (2005). 19691988.Google Scholar
Lambeck, K., Yokoyama, Y., and Purcell, T. Into and out of the Last Glacial Maximum: sea-level change during oxygen isotope stages 3 and 2. Quaternary Science Reviews 21, (2002). 343360.Google Scholar
Lambeck, K., Antonioli, F., Purcell, A., and Silenzi, S. Sea-level change along the Italian coast for the past 10,000 yr. Quaternary Science Reviews 23, (2004). 15671598.CrossRefGoogle Scholar
Langgut, D. Late Quaternary Palynological Sequences from the Eastern Mediterranean Sea. Israel Geological Survey, Report GSI/16/08. (2008). (Hebrew with English abstract) Google Scholar
Lev, L., Boaretto, E., Heller, J., Marco, S., and Stein, M. The feasibility of using Melanopsis shells as radiocarbon chronometers, Lake Kinneret, Israel. Radiocarbon 49, 2 (2007). 10031015.Google Scholar
Lichter, M., Klein, M., and Zviely, D. Dynamic morphology of small south-eastern Mediterranean river mouths: a conceptual model. Earth Surface Processes and Landforms 36, (2011). 547562.Google Scholar
Loeblich, A.R., Tappan, H. Foraminiferal Genera and their Classification 2 vols, (1987). Van Nostrand Reinhold Company, New York. 1970. pls. 1–847 Google Scholar
McGarry, S., Bar-Matthews, M., Matthews, A., Vaks, A., Schilman, B., and Ayalon, A. Constraints on hydrological and paleotemperature variations in the Eastern Mediterranean region in the last 140 ka given by the δD values of speleothem fluid inclusions. Quaternary Science Reviews 7–8, (2004). 919993.CrossRefGoogle Scholar
Mienis, H.K. A Revised List of Aquatic Mollusks Recorded from the Yarkon River. Pergament, D. HaYarkon. (1995). Reshut Nahal HaYarkon, Ramat-Gan.Google Scholar
Mienis, H.K., and Ortal, R. Changes in the mollusc fauna of Nahal Taninim (1865–1986). Ecology and Environment 4, (1997). 5764. in Hebrew, English abstract Google Scholar
Mienis, H.K., and Ortal, R. The Molluscs Fauna of the Na'aman's Catchment area, Israel. 1. A Review of the Records of the Inland Molluscs. Triton 4, (2001). 2741.Google Scholar
Mischke, S., Almogi-Labin, A., Ortal, R., Rosenfeld, A., Markus, J., Schwab, M.J., and Boomer, I. Quantitative reconstruction of lake conductivity in the Quaternary of the Near East (Israel) using ostracods. Journal of Paleolimnology 43, (2010). 667688.CrossRefGoogle Scholar
Mitsch, W.J., and Gosselink, J.G. Wetlands. (2000). John Wiley & Sons, Inc., New York. 920 pp.Google Scholar
Mook, W.G. Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology (Palaeo3) 9, (1971). 245263.Google Scholar
Neev, D., and Emery, K.O. The Destruction of Sodom and Gomorrah, and Jericho. (1995). Oxford University Press, Oxford, UK. 175 pp.Google Scholar
Orme, A.R. Wetland morphology, hydrodynamics and sedimentation. Williams, M. Wetlands — A Threatened Landscape. (1991). Basil Blackwell, Oxford. 4294.Google Scholar
Pierre, C. The oxygen and carbon isotope distribution in the Mediterranean water masses. Marine Geology 153, (1999). 4155.Google Scholar
Poppe, G.T., and Goto, Y. European Seashells Voll. I. (1991). Verlag Christa Hemmen, Wiesbaden, Germany.Google Scholar
Poppe, G.T., and Goto, Y. European Seashells Voll. II. (1993). Verlag Christa Hemmen, Wiesbaden, Germany.Google Scholar
Porat, N., Sivan, D., and Zviely, D. Late Holocene embayment and sedimentological infill processes in Haifa Bay, SE Mediterranean. Israel Journal of Earth Sciences 57, (2008). 2131.CrossRefGoogle Scholar
Raban, A. Recent maritime archaeological research in Israel. International Journal of Nautical Archaeology and Underwater Exploration 12, (1983). 229251.Google Scholar
Raban, A. Alternated river courses during the Bronze Age along the Israeli coastline. Colloques Internationaux C.N.R.S. Deplacements des lignes de rivage en Mediterranee, Paris. (1987). 173189.Google Scholar
Reinhardt, E.G., Fitton, R.J., and Schwarcz, J.P. Isotopic (Sr, O, C) indicators of salinity and taphonomy in marginal marine systems. Journal of Foraminiferal Research 33, (2003). 262272.Google Scholar
Robinson, A.A., Black, S., Sellwod, B.W., and Valdes, P.J. A review of palaeoclimates and palaeoenvironments in the Levant and eastern Mediterranean from 25,000 to 5,000 years BP: setting the environmental background for the evolution of human civilization. Quaternary Science Reviews 25, (2006). 15171541.Google Scholar
Rosenfeld, A., and Vesper, B. The variability of the sieve-pores in recent and fossil species of Cyprideis torosa (Jones,1850) as an indicator for salinity and paleosalinity. Löffler, H., and Danielopol, D. Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Dr w. Junk b.v. Pub., Hague 39, (1977). 5567.Google Scholar
Rossignol-Strick, M. The Holocene climatic optimum and pollen records of sapropel 1 in the Eastern Mediterranean, 9,000–6,000 BP. Quaternary Science Reviews 18, (1999). 515530.Google Scholar
Sade, A., Hall, J.K., Golan, A., Amit, G., Gur-Arie, L., Tibor, G., Ben-Avraham, Z., Ben-Dor, E., Fonseca, L., Calder, B.R., Mayer, L.A., and de Moustier, C.P. Acoustic backscatter at 95 kHz from the Mediterranean seafloor off Northern Israel. (2006). Geological Survey of Israel, Google Scholar
Schattner, U., Lazar, M., Tibor, G., Ben-Avraham, Z., and Makovsky, Y. Filling up the shelf — A sedimentary response to the last post-glacial sea rise. Marine Geology 278, (2010). 165176.Google Scholar
Schilman, B., and Almogi-Labin, A. Chemical and isotopic composition of the brackish Timsah Springs: Monitoring study during 2000–2003. Geological Survey of Israel Report GSI/45/2003. (2003). Google Scholar
Scott, D.B., Medioli, F.S., and Schafer, C.T. Monitoring in coastal environments using Foraminifera and Thecamoebian indicators. (2001). Cambridge University Press, Google Scholar
Shand, R.D., Baily, D.G., and Shepard, M.J. Longshore realignment of shore parallel sand-bars at Wanganui, new Zealand. Marine Geology 179, (2001). 147161.Google Scholar
Sivan, D., and Galili, E. Holocene tectonic activity in the Galilee coast and shallow shelf, Israel, A geological and archaeological study. Israel Journal of Earth Sciences 48, (1999). 4761.Google Scholar
Sivan, D., and Porat, N. Late Pleistocene contemporaneous formation of calcareous aeolianite (kurkar) and paleosol (hamra) in the Carmel coast, Israel. Palaeogeography, Palaeoclimatology, Palaeoecology (Palaeo3) 211, (2004). 95106.Google Scholar
Sivan, D., Gvirtzman, G., and Sass, E. Quaternary stratigraphy and paleogeography of the Galilee coastal plain, Israel. Quaternary Research 51, (1999). 280294.Google Scholar
Sivan, D., Wdowinsky, S., Lambeck, K., Galili, E., and Raban, A. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeography, Palaeoclimate Palaeoecology (Palaeo3) 167, (2001). 101117.Google Scholar
Sivan, D., Eliyahu, D., and Raban, A. Late Pleistocene to Holocene wetlands now covered by sand, along the Carmel Coast of Israel, and their relation to Human settlement: An example from the coastal site of Dor. Journal of Coastal Research 20, (2004). 97110.Google Scholar
Sivan, D., Lambeck, K., Toueg, R., Raban, A., Porat, Y., and Shirman, B. Ancient coastal wells of Caesarea Maritima, Israel, an indicator for sea-level changes during the last 2000 years. Earth and Planetary Science Letters 222, (2004). 315330.Google Scholar
Sneh, A. Faulting in the coastal plain of Israel during the Late Quaternary, re-examined. Israel Journal of Earth Sciences 49, (2000). 2129.Google Scholar
Sneh, Y., and Klein, M. Holocene sea-level changes at the coast of Dor, Southeast Mediterranean. Science 226, (1984). 831832.Google Scholar
Tchernov, E. Freshwater Molluscs of the Sinai Peninsula. Israel Journal of Zoology 20, (1971). 209221.Google Scholar
Tchernov, E. On the Pleistocene Molluscs of the Jordan Valley. The Pleistocene of the Central Jordan Valley —The Excavation at 'Ubeidiya. Proceedings, Israel Academy of Sciences and Humanities 11, (1973). 146.Google Scholar
Tsatskin, A., and Ronen, A. Micromorphology of Mousterian paleosol aeolianites at the site of Habonim, Israel. Catena 34, (1999). 365384.Google Scholar
Valikangas, I. Finnische Zugvogel aus englischem Vogeleirn. Vogelzug 4, (1933). 159166.Google Scholar
Vött, A., Brückner, H., Schriever, A., Luther, J., Handl, M., and van der Borg, K. Holocene Paleogeographies of the Palairos Coastal Plain (Akarnania Northwest Greece) and their geoarchaeological implications. Geoarchaeology 21, (2006). 649664.Google Scholar
Vött, A., Brückner, H., Handl, M., and Schriever, A. Holocene palaeogeographies of the Astakos coastal plain (Akarnania, NW Greece). Palaeogeography, Palaeoclimatology, Palaeoecology (palaeo3) 239, (2006). 126146.Google Scholar
Wagner, C.W. Sur les Ostracods du Quaternair Recent des Pays-Bas et leur Utilisation dans l'Etude Geologiqua des depôts Holocenes. (1957). Mouton & Co., 'S-Gravenhage.Google Scholar
Zviely, D., Sivan, D., Ecker, A., Bakler, N., Rohrlich, V., Galili, E., Boaretto, E., Klein, M., and Kit, E. The Holocene evolution of the Haifa Bay area, Israel, and its influence on ancient human settlements. The Holocene 16, (2006). 849861.Google Scholar
Zviely, D., Kit, E., and Klein, M. Longshore sand transport estimates along the Mediterranean coast of Israel in the Holocene. Marine Geology 238, (2007). 6167.Google Scholar