Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T00:55:03.108Z Has data issue: false hasContentIssue false

Middle and late Pleistocene glaciations in the Campo Felice Basin (central Apennines, Italy)

Published online by Cambridge University Press:  20 January 2017

Carlo Giraudi*
Affiliation:
ENEA, C.R. Casaccia, s.p. Anguillarese, 301, 00123 S. Maria di Galeria, Rome, Italy
Giulia Bodrato
Affiliation:
Regione Piemonte, Direzione OO.PP.-Difesa del Suolo-Ec.Mont.For., Via Petrarca 44, 10126, Turin, Italy
Marianna Ricci Lucchi
Affiliation:
Department of Earth Sciences, University of Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy
Nicola Cipriani
Affiliation:
Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy
Igor M. Villa
Affiliation:
University of Milan “Bicocca”, Piazza della Scienza 4, 20126 Milan, Italy Universität Bern, Baltzerstrasse 3, 3012 Bern, Switzerland
Biagio Giaccio
Affiliation:
IGAG-CNR, Via Bolognola 7, 00138 Rome, Italy
Giovanni M. Zuppi
Affiliation:
IGAG-CNR, Via Bolognola 7, 00138 Rome, Italy
*
Corresponding author. Fax: + 39 0630486678.

Abstract

The present paper refers to research conducted in the tectonic-karst depression of Campo Felice in the central Apennines (Italy), in which glacial, alluvial and lacustrine sediments have been preserved. Stratigraphic interpretations of sediments underlying the Campo Felice Plain are based on evidence obtained from nine continuous-core boreholes. The boreholes reach a depth of 120 m and provide evidence of five sedimentation cycles separated by erosion surfaces. Each cycle is interpreted as an initial response to a mainly warm stage, characterized by low-energy alluvial and colluvial deposition, pedogenesis, and limited episodes of marsh formation. In turn, a mainly cold stage follows during which a lake formed, and glaciers developed and expanded, leading to deposition of glacial and fluvioglacial deposits. The chronological framework is established by eleven accelerator mass spectrometer 14C ages and three 39Ar–40Ar ages on leucites from interbedded tephra layers. These age determinations indicate five glacial advances that respectively occurred during marine oxygen isotope stages 2, 3–4, 6, 10 and 14.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accordi, G., Carbone, F., Civitelli, G., Corda, L., De Rita, D., Esu, D., Funiciello, R., Kotsakis, T., Mariotti, G., and Sposato, A. Lithofacies map of the Latium-Abruzzi and neighbouring areas. C.N.R. Quaderni della Ricerca Scientifica 114, 5 (1986). 223 pp.Google Scholar
Belluso, E., Ruffini, R., Schaller, M., and Villa, I.M. Electron-microscope and Ar isotope characterization of chemically heterogeneous amphiboles from the Palala shear zone, Limpopo Belt, South Africa. European Journal of Mineralogy 12, (2000). 4562.Google Scholar
Bosi, C., and Manfredini, M. Osservazioni geologiche nella zona di Campofelice (L'Aquila). Memorie Società Geologica Italiana 6, (1967). 245267.Google Scholar
Calvet, M. The Quaternary glaciations of the Pyrenees. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations—Extent and Chronology, Part. I: Europe. 119–128. (2004). Amsterdam. Elsevier, Google Scholar
Cassoli, A., Corda, L., Lodoli, C., Malatesta, A., Molaroni, M.V., and Ruggeri, A. Il glacialismo quaternario del gruppo Velino-Ocre-Sirente. Memorie Società Geologica Italiana 35, (1986). 855867.Google Scholar
Chiarini, E., Giardini, M., La Posta, E., Papasodaro, F., and Sadori, L. Sedimentology, palinology and new geochronological constrains on Quaternary deposits of the Corvaro intermontane basin (central Italy). Revue de Micropaléontologie 50, (2007). 309314.Google Scholar
Di Rita, F., and Magri, D. Pollen analysis of Upper Pleistocene sediments at Campo Felice, Central Italy. Il Quaternario-Italian Journal of Quaternary Sciences 17, 1 (2004). 117127.Google Scholar
Fernandez Mosquera, D., Marti, K., Vidal Romani, J.R., and Weigel, A. Late Pleistocene deglaciation chronology in the NW of the Iberian Peninsula using cosmic-ray produced 21Ne in quartz. Nuclear Instruments and Methods in Physics Research B172, (2000). 832837.CrossRefGoogle Scholar
Freda, C., Gaeta, M., Karner, D.B., Marra, F., Renne, P.R., Taddeucci, J., Scarlato, P., Christensen, J.N., and Dallai, L. Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). Bulletin of Volcanology 68, (2006). 567591.Google Scholar
Frezzotti, M., and Giraudi, C. Evoluzione geologica tardo-pleistocenica ed olocenica del conoide complesso di Valle Majelama (Massiccio del Velino — Abruzzo). Quaternario 5, 1 (1992). 3350.Google Scholar
Frezzotti, M., and Narcisi, B. Late Quaternary tephra-derived paleosols in Central Italy's carbonate Apennine range: stratigraphical and paleoclimatological implications. Quaternary International 34–36, (1996). 147153.Google Scholar
Giaccio, B., Galadini, F., Sposato, A., Messina, P., Moro, M., Zreda, M., Cittadini, A., Salvi, S., and Todero, A. Image processing and roughness analysis of exposed bedrock fault planes as a tool for paleoseismological analysis: result from the Campo Felice fault (central Apennines, Italy). Geomorphology 49, (2002). 281301.Google Scholar
Giaccio, B., Sposato, A., Gaeta, M., Marra, F., Palladino, D.M., Taddeucci, J., Barbieri, M., Messina, P., and Rolfo, M.F. Mid-distal occurrences of the Albano Maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity of the Colli Albani Volcanic District, Central Italy. Quaternary International 171–172, (2007). 160168.Google Scholar
Giordano, G., Esposito, A., De Rita, D., Fabbri, M., Mazzini, I., Trigari, A., Rosa, C., and Funiciello, R. The sedimentation along the Roman coast between Middle and Upper Pleistocene: the interplay of eustatism, tectonics and volcanism. Il Quaternario-Italian Journal of Quaternary Sciences 16, 1bis (2003). 121129.Google Scholar
Giraudi, C. Considerations on the significance of some post-glacial fault scarps in the Abruzzo Apennines (Central Italy). Quaternary International 25, (1995). 3345.CrossRefGoogle Scholar
Giraudi, C. The Late Quaternary geologic evolution of Campo Felice (Abruzzo — Central Italy). Giornale di Geologia 60, (1998). 6782. sez. 3 Google Scholar
Giraudi, C. Nuovi dati sull'evoluzione tardo-pleistocenica ed olocenica di Campo Felice (L'Aquila, Abruzzo). Quaternario 14, 1 (2001). 4754.Google Scholar
Giraudi, C. The Apennine glaciations in Italy. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations—Extent and Chronology, Part. I: Europe. 215–224. (2004). Amsterdam. Elsevier, Google Scholar
Giraudi, C. Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quaternary Research 64, (2005). 176184.Google Scholar
Giraudi, C., and Frezzotti, M. Late Pleistocene glacial events in the Central Apennine, Italy. Quaternary Research 48, 3 (1997). 280290.Google Scholar
Hughes, P.D., Woodward, J.C., and Gibbard, P.L. Quaternary glacial history of the Mediterranean Mountains. Progress in Physical Geography 30, 3 (2006). 334364.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., and Gibbard, P.L. Middle Pleistocene cold stage climate in the Mediterranean: new evidence from the glacial record. Earth and Planetary Science Letters 253, (2007). 5056.Google Scholar
Hughes, P.D., and Woodward, J.C. Timing of glaciation in the Mediterranean mountains during the last cold stage. Journal of Quaternary Science 23, (2008). 575588.CrossRefGoogle Scholar
Hughes, P.D., and Woodward, J.C. Glacial and periglacial environments. Woodward, J.C. The Physical Geography of the Mediterranean. (2009). Oxford University Press, Oxford. 353383.Google Scholar
Jaurand, E. Glaciers disparù de l'Apennin: géomorphologie et paléoenvironments glaciaires de l'Italie peninsulaire. Monographie de l'Universitè de La Sorbonne. Geographie vol. 10, (1998). 382 pp.Google Scholar
Karner, D., Marra, F., and Renne, R. The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic–tectonic hazard for Rome. Journal of Volcanological and Geothermal Research 107, 1–3 (2001). 185215.CrossRefGoogle Scholar
Kotarba, A., Hercman, H., and Dramis, F. On the age of Campo Imperatore glaciations, Gran Sasso Massif, Central Italy. Geografia Fisica e Dinamica Quaternaria 24, (2001). 6569.Google Scholar
Laurenzi, M.A., and Villa, I.M. 40Ar/39Ar chronostratigraphy of Vico ignimbrites. Periodico di Mineralogia 56, (1987). 285293.Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B. A chemical classification of volcanic rocks based on the total Alkali–Silica diagram. Journal of Petrology 27, (1986). 745750.Google Scholar
Macklin, M.G., Fuller, I.C., Lewin, J., Maas, G.S., Passmore, D.G., Rose, J., Woodward, J.C., Black, S., Hamlin, R.H.B., and Rowas, J.S. Correlation of Late and Middle Pleistocene fluvial sequences in the Mediterranean and their relationship to climate change. Quaternary Science Reviews 21, (2002). 16331644.CrossRefGoogle Scholar
Marra, F., Taddeucci, J., Freda, C., Marzocchi, W., and Scarlato, P. Recurrence of volcanic activity along the Roman Comagmatic Province (Tyrrhenian margin of Italy) and its tectonic significance. Tectonics 23, (2004). TC4013 http://dx.doi.org/10.1029/2003TC001600CrossRefGoogle Scholar
Narcisi, B. Segnalazione di un livello piroclastico di provenienza etnea nell'area del Fucino (Italia Centrale). Quaternario 6, 1 (1993). 8792.Google Scholar
Stuiver, M., and van der Plicht, H. Calibration database editorial comment. Radiocarbon 40, 3 (1998). XIIXIII.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, W.J., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24, 000–0 cal BP. Radiocarbon 40, 3 (1998). 10411083.Google Scholar
Talma, A.S., and Vogel, J.C. A simplified approach to calibrating C14 dates. Radiocarbon 35, 2 (1993). 317322.Google Scholar
Tzedakis, P.C., McManus, J.F., Hooghiemstra, H., Oppo, D.W., and Wijmstra, T.A. Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth and Planetary Science Letters 212, (2003). 197212.Google Scholar
Villa, I.M., Calanchi, N., Dinelli, E., and Lucchini, F. Age and evolution of the Albano Crater Lake (Roman Volcanic Province). Acta Vulcanologica 11, (1999). 305310.Google Scholar
Woodward, J.C., Lewin, J., and Macklin, M.G. Alluvial sediment sources in glaciated catchment: the Voidomatis basin, northwest Greece. Earth Surface Processes and Landforms 16, (1992). 205216.Google Scholar
Woodward, J.C., Macklin, M.G., and Smith, G.R. Pleistocene glaciation in the mountains of Greece. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations—Extent and Chronology, Part. I: Europe. 155–173. (2004). Amsterdam. Elsevier, CrossRefGoogle Scholar