Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:51:10.409Z Has data issue: false hasContentIssue false

The latest Ursus spelaeus in Italy, a new contribution to the extinction chronology of the cave bear

Published online by Cambridge University Press:  20 January 2017

Ivan Martini
Affiliation:
Department of Environment, Earth and Physical Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy
Mauro Coltorti
Affiliation:
Department of Environment, Earth and Physical Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy
Paul P.A. Mazza*
Affiliation:
Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy
Marco Rustioni
Affiliation:
Museum of Paleontology, via Poggio Bracciolini 36-40, 52025 Montevarchi, Italy
Fabio Sandrelli
Affiliation:
Department of Environment, Earth and Physical Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy
*
*Corresponding author.

Abstract

The skeleton of a young prime adult cave bear, Ursus spelaeus, was found in Chiostraccio Cave (Siena, Tuscany, central Italy), only slightly buried under rock falls. The specimen was dated yielding a conventional age of 24,030 ± 100 14C yr BP (29,200–28,550 cal yr BP), which makes it the latest known representative of the species in Italy. The skeleton was accompanied by the remains of wolf (Canis lupus), wild boar (Sus scrofa), aurochs (Bos primigenius), red deer (Cervus elaphus), roe deer (Capreolus capreolus), bat (Vespertinus murinus), and crow (Corvus monedula). The site seems confirming that the latest Italian U. spelaeus populations shared the risk of intrusion. The association of the cave bear with other animals suggests that the assemblage is an attritional palimpsest of remains of different species not originally associated in life. Cave bears were probably more vegetarian than brown bears and possibly became extinct when plant productivity dropped at the onset of MIS 2. Central and southern Italy may have offered isolated and sheltered refugia for cave bears.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreucci, S., Clemmersen, L.B., Murray, A.S., and Pascucci, V. Middle to late Pleistocene coastal deposits of Alghero, northwest Sardinia (Italy): chronology and evolution. Quaternary International 222, (2010). 316.CrossRefGoogle Scholar
Andrews, P., and Turner, A. Life and death of the Westbury bears. Annales Zoolgici Fennici 28, (1992). 139149.Google Scholar
Argenti, P., and Mazza, P.P.A. Mortality analysis of the Late Pleistocene bears from Grotta Lattaia, central Italy. Journal of Archaeological Science 33, (2006). 15521558.Google Scholar
Bennett, K.D., Tzedakis, P.C., and Willis, K.J. Quaternary refugia of north European trees. Journal of Biogeography 18, (1991). 103115.CrossRefGoogle Scholar
Bianchi-Demicheli, F., and Oppizzi, N. Ricerche speleologiche e paleontologiche nella regione del Monte Generosa, la Caverna Generosa. Bolletino Società Ticinese di Scienze Naturali 89, (2001). 6166.Google Scholar
Bocherens, H., Bridault, A., Drucker, D.G., Hofreiter, M., Münzel, S.C., Stiller, M., and van der Plicht, J. The last of its kind? Radiocarbon, ancient DNA and stable isotope evidence from a late cave bear from Rochedane (France). Quaternary International (2013). http://dx.doi.org/10.1016/j.quaint.2013.05.021 (in press) Google Scholar
Bon, M., and Boscato, P. Associazioni faunistiche dell'Olocene Antico nell'Italia del Sud, confronto tra un sito adriatico (Grotta delle Mura, Monopoli, Bari) ed uno tirrenico (Grotta della Serratura, Marina di Camerota, Salerno). II Quaternario 9, 2 (1996). 567572.Google Scholar
Boscato, P. I macromammiferi dell'Aurignaziano e del Gravettiano antico di Grotta Paglicci. Palma di Cesnola, A. Paglicci. L'Aurignaziano e il Gravettiano antico: Claudio Grenzi Editore, Foggia. (2005). 4961.Google Scholar
Chiesa, S., Coltorti, M., Cremaschi, M., Ferraris, M., and Prosperi, L. Loess sedimentation and quaternary deposits in the Marche province. Proceedings of the International Meeting INQUA Commission on Loess and Paleogeography, the Loess in Northern and Central Italy. A Loess Basin Between the Alps and the Mediterranean Region. Quaderni di Geodinamica Alpina e Quaternaria (1990). 103130.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Hostetler, S.W., and McCabe, A.M. The Last Glacial Maximum. Science 325, (2009). 710714.Google Scholar
Coltorti, M., and Dramis, F. Sedimentological characteristics of stratified slope waste deposits in the Umbria–Marche Apennines (central Italy) and their genetic implication. Processus et mesure de l'erosion, Ed. CNRS. (1987). 145152. (Paris) Google Scholar
Coltorti, M., and Dramis, F. The significance of stratified slope waste deposits in the quaternary Umbria Marche Apennines (central Italy). Zeitschrift für Geomorphologie. Neue Folge Supplementbande 71, (1988). 5970.Google Scholar
Coltorti, M., and Dramis, F. The chronology of Upper Pleistocene stratified slope-waste deposits in central Italy. Permafrost and Periglacial Processes 6, (1995). 235242.Google Scholar
Coltorti, M., Melis, E., and Patta, D. Geomorphology, stratigraphy and facies analysis of some Late Pleistocene and Holocene key deposits along the coast of Sardinia (Italy). Quaternary International (2010). 117.Google Scholar
Coltorti, M., Della Fazia, J., Paredes Rios, F., and Tito, G. Nuagapua (Chaco, Bolivia): evidence for the latest occurrence of megafauna in association with human remains in South America. Journal of South American Earth Sciences 33, (2012). 5667.Google Scholar
Coltorti, M., Firuzabadi, D., and Pieruccini, P. Geomorphological map and land units at 1:200,000 scale of the Siena Province (Southern Tuscany, Italy). Journal of Maps 2011, (2012). 115.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.Google Scholar
Erdbrink, D.P. A review of fossil and recent bears of the Old World with remarks on their phylogeny based upon their dentition, 2 parts. (1953). Drukkerij Jan De Lange, Deventer, The Netherlands.Google Scholar
Ficcarelli, G., Bertini, A., Coltorti, M., Mazza, P., Mezzabotta, C., Rook, L., and Torre, D. Hypotheses on the causes of extinction of the South American mastodons during the last maximum glacial. Journal of South American Earth Sciences 10, 1 (1997). 2938.Google Scholar
Ficcarelli, G., Coltorti, M., Moreno Espinosa, M., Pieruccini, P.L., Rook, L., and Torre, D. A model for the Holocene extinction of the mammal megafauna in Ecuador (South America). Journal of South American Earth Sciences 15, (2003). 835845.Google Scholar
Follieri, M., Giardini, M., Magri, D., and Sadori, L. Palynostratigraphy of the last glacial period in the volcanic region of central Italy. Quaternary International 47, 48 (1998). 320.Google Scholar
Fornaca Rinaldi, G., and Radmilli, A.M. Datazione con il metodo Th 230/238 di stalagmiti contenute in depositi musteriani. Atti Società Toscana di Scienze Naturali 75, (1968). 639646.Google Scholar
Forsten, A., and Dimitrijević, V. Pleistocene horses (genus Equus) in the central Balkans. Geoloski Anali Balkaanskoga Poluostrva 65, (2004). 5575.Google Scholar
Gandin, A., Giamello, M., Guasparri, G., Mugnaini, S., and Sabatini, G. The calcare cavernoso of the Montagnola Senese (Siena, Italy): mineralogical-petrographic and petrogenetic features. Mineralogica et Petrographica Acta 43, (2000). 271289.Google Scholar
Giraudi, C., and Frezzotti, M. Late Pleistocene glacial events in the Central Apennines, Italy. Quaternary Research 48, (1997). 280290.Google Scholar
Grandal-d'Anglade, A., and López González, F. Sexual dimorphism and ontogenetic variation in the skull of the cave bear (Ursus spelaeus Rosenmüller) of the European Upper Pleistocene. Geobios 38, 3 (2005). 325337. http://dx.doi.org/10.1016/j.geobios.2003.12.001Google Scholar
Grove, A.T., and Rackham, O. The Nature of Mediterranean Europe, an Ecological History. (2001). Yale University Press, New Haven and London.Google Scholar
Heaton, T.J., Blackwell, P.G., and Buck, C.E. A Bayesian approach to the estimation of radiocarbon calibration curves: the IntCal09 methodology. Radiocarbon 51, (2009). 11511164.Google Scholar
Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58, (1996). 247276.Google Scholar
Hewitt, G.M. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68, (1999). 87112.CrossRefGoogle Scholar
Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nature 405, (2000). 907913.Google Scholar
Hofreiter, M., Capelli, C., Krings, M., Waits, L., Conard, N., Münzel, S., Rabeder, G., Nagel, D., Paunovic, M., Jambresic, G., Meyer, S., Weiss, G., and Pääbo, S. Ancient DNA analyses reveal high mitochondrial DNA sequence diversity and parallel morphological evolution of Late Pleistocene cave bears. Molecular and Biological Evolution 19, (2002). 12441250.Google Scholar
Hofreiter, M., Serre, D., Rohland, N., Rabeder, G., Nagel, D., Conard, N., Munzel, S., and Paabo, S. Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America 101, (2004). 12,96312,968.Google Scholar
Huntley, B. Europe. Huntley, B., and Webb, T. Vegetation History. (1988). Kluwer Academic Publishers, London. 341384.Google Scholar
Huntley, B. European post-glacial forests, compositional changes in response to climatic change. Journal of Vegetation Science 1, (1990). 507518.Google Scholar
Huntley, B. Pollen-climate response surfaces and the study of climate change. Gray, J.M. Applications of Quaternary Research. Quaternary Proceedings 2 (1992). Quaternary Research Association, Cambridge. 9199.Google Scholar
Iacoviello, F., and Martini, I. Provenance and geological significance of red mud and other clastic sediments of the Mugnano cave (Montagnola Senese, Italy). International Journal of Speleology 41, 2 (2012). 317328.Google Scholar
Iacoviello, F., and Martini, I. Clay minerals in cave sediments and terra rossa soils in the Montagnola Senese karst massif (Italy). Geological Quarterly 53, 3 (2013). 527536.Google Scholar
Jaurand, E. Il glacialismo negli Appennini. Testimonianze geomorfologiche e riferimenti cronologici e paleoclimatici. Bollettino della Società Geografica Italiana 4, 3 (1999). 399432.Google Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E., and White, J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16, (2001). 299307.Google Scholar
Kahlke, R.-D., García, N., Kostopoulos, D.S., Lacombat, F., Lister, A.M., Mazza, P.P.A., Spassov, N., and Titov, V.V. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quaternary Science Reviews Special Issue, Ecological scenarios for human evolution during the Early and early Middle Pleistocene in the Western Palaearctic. Quaternary Science Reviews 30, (2011). 13681395.Google Scholar
Knapp, M., Rohland, N., Weinstock, J., Baryshnikov, G., Sher, A., Nagel, D., Rabeder, G., Pinhasi, R., Schmidt, H.A., and Hofreiter, M. First DNA sequences from Asian cave bear fossils reveal deep divergences and complex phylogeographic patterns. Molecular Ecology 18, (2009). 12251238.CrossRefGoogle ScholarPubMed
Koby, F. Les usures séniles des canines d'Ursus spelaeus et la préhistoire. Verhandlungen. Naturforschende Gesellschaft (Basel) 51, (1939). 7695.Google Scholar
Kurtén, B. Life and death of the Pleistocene cave bear: a study in paleoecology. Acta Zoologica Fennica 95, (1958). 159.Google Scholar
Kurtén, B. The Cave Bear Story. (1976). Columbia University Press, New York.Google Scholar
Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z., the INTIMATE group, Precise dating and correlation of events in the North Atlantic region during the Last Termination, a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, (2008). 617.CrossRefGoogle Scholar
Lugli, S. Timing of post-depositional events in the Burano Formation of the Secchia Valley (Upper Triassic, northern Apennines) clues from gypsum–anhydrite transition and carbonate metasomatism. Sedimentary Geology 140, (2001). 107122.Google Scholar
Malez, M. Kvartarni sisavci (Mammalia) iz velike pećine na Ravnoj gori (SR Hrvatska, Jugoslavija). Rad Zavoda za znanstveni rad Jugoslavenske akademije znanosti i umjetnosti. Varaždin 1, (1986). 33139.Google Scholar
Martini, I. Cave clastic sediments and implications for speleogenesis: new insights from the Mugnano Cave (Montagnola Senese, Northern Apennines, Italy). Geomorphology 134, (2011). 452460.Google Scholar
Mattson, D.J. Diet and morphology of extant and recently extinct northern bears. Ursus 10, (1998). 479496.Google Scholar
Mazza, P., Rustioni, M., and Boscagli, G. Evolution of ursid dentition, with inferences on the functional morphology of the masticatory apparatus in the genus Ursus. Moggi-Cecchi, J. Aspects of Dental Biology: Paleontology, Anthropology and Evolution. (1995). Publisher International Institute for the study of Man, Florence. 147157.Google Scholar
Monegato, G., Pini, R., Ravazzi, C., Reimer, P., and Wick, L. Correlation of Alpine glaciation and global glacioeustatic changes through integrated lake and alluvial stratigraphy in N-Italy. Journal of Quaternary Science 26, (2011). 791804.Google Scholar
Münzel, S.C., Hofreiter, M., Stiller, M., Mittnik, A., Conard, N.J., and Bocherens, H. Pleistocene bears in the Swabian Jura (Germany): genetic replacement, ecological displacement, extinctions and survival. Quaternary International 245, (2011). 225237. http://dx.doi.org/10.1016/j.quaint.2011.03.060Google Scholar
Musil, R. Ursus spelaeus — Der Höhlenbär. Museum für Ur-und Frühgeschichte Thüringens. (1980). Weimar, Germany.Google Scholar
Oeschger, H., Siegenthaler, V., Schotterer, U., and Gugelmann, A. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27, (1975). 168192.Google Scholar
Pacher, M. Upper Pleistocene cave assemblages at Alpine sites in Austria and adjacent regions. Preistoria Alpina 39, (2003). 115128.Google Scholar
Pacher, M., and Stuart, A.J. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas 38, (2009). 189206.Google Scholar
Pascucci, V. Karst and paleoenvironments of the Siena area (central Italy). Guerrieri, L., Rischia, I., and Serva, L. 32nd International Geological Conference. (2004). Florence, Italy. 2028.Google Scholar
Pascucci, V., and Bianciardi, G. Geologia e morfologia, una serie di modesti rilievi caratterizzati da una struttura complessa e da un notevole sviluppo di fenomeni carsici. Manganelli, G., and Favilli, L. La Montagnola Senese, una guida naturalistica. (2001). WWF Italia, Rome. 1123.Google Scholar
Rabeder, G. Neues vom Höhlenbären, Zur Morphogenetik der Backenzähne. Die Höhle 34, (1983). 6785.Google Scholar
Rabeder, G., Nagel, D., and Pacher, M. Der Höhlenbär. (2000). Thorbecke, Stuttgart.Google Scholar
Ramakrishnan, U., and Hadly, E.A. Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Molecular Ecology 18, (2009). 13101330.Google Scholar
Randi, E. Conservation genetics of carnivores in Italy. Comptes Rendus Biologies 326, Suppl. 1 (2003). S54S60.Google Scholar
Ravazzi, C., Deaddis, M., De Amicis, M., Marchetti, M., Vezzoli, G., and Zanchi, A. The last 40 ka evolution of the Central Po Plain between the Adda and Serio rivers. Géomorphologie, Relief, Processus, Environnement 2, (2012). 131154.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Reumer, J.W.F. Habitat fragmentation and the extinction of mammoths (Mammuthus primigenius, Proboscidea, Mammalia), arguments for a causal relationship. Kahlke, R.-D., Maul, L.C., and Mazza, P.P. Late Neogene and Quaternary biodiversity and evolution, regional developments and interregional correlations. Vol. I. Proceedings of the 18th International Senckenberg Conference (VI International Palaeontological Colloquium in Weimar). Courier Forschungsinstitut Senckenberg 256, (2007). 279286. (Stuttgart) Google Scholar
Rowe, K., Heske, E., Brown, P., and Paige, K. Surviving the ice, northern refugia and postglacial colonization. Proceedings of the National Academy of Sciences of the United States of America 101, (2004). 10,35510,359.Google Scholar
Starkel, L. Environmental changes at the Younger Dryas–Preboreal transition and during the early Holocene: some distinctive aspects in central Europe. The Holocene 1, (1991). 234242.Google Scholar
Stewart, J.R., and Lister, A.M. Cryptic northern refugia and the origins of modern biota. Trends in Ecology & Evolution 16, (2001). 608613. http://dx.doi.org/10.1016/S0169-5347(01)02338-2Google Scholar
Stiller, M., Baryshnikov, G., Bocherens, H., d'Anglade, G., Hilpert, B., Munzel, S.C., Pinhasi, R., Rabeder, G., Rosendahl, W., Trinkaus, E., Hofreiter, M., and Knapp, M. Withering away — 25, 000 years of genetic decline preceded cave bear extinction. Molecular and Biological Evolution 27, (2010). 975978.Google Scholar
Stiner, M.C. Mortality analysis of Pleistocene bears and its paleoanthropological relevance. Journal of Human Evolution 34, (1998). 303326.Google Scholar
Stuart, A.J. Mammalian extinctions in the late Pleistocene of northern Eurasia and North America. Biological Reviews 66, (1991). 453562.Google Scholar
Stuart, A.J. Late Pleistocene megafaunal extinctions: a European perspective. MacPhee, R.D.E. Extinctions in Near Time, Causes, Contexts and Consequences. (1999). Kluwer Academic/Plenum, New York. 257269.Google Scholar
Stuart, A.J., and Lister, A.M. Patterns of Late Quaternary megafaunal extinctions in Europe and northern Asia. Courier Forschungsinstitut Senckenberg 259, (2007). 287297.Google Scholar
Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., and Lister, A.M. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431, (2004). 684689.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, (1998). 10411083.Google Scholar
Taberlet, P., and Bouvet, J. Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear (Ursus arctos) in Europe. Proceedings of the Royal Society of London. Series B 255, (1994). 195200.Google Scholar
Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., and Cosson, J.F. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, (1998). 453464.Google Scholar
Trincardi, F., and Correggiari, A. Quaternary forced regression deposits in the Adriatic basin and the record of composite sea-level cycles. Hunt, D., and Gawthorpe, R. Depositional Response to Forced Regression. Special Publication Geological Society 172, (2000). 245269. (London) Google Scholar
Trincardi, F., Asioli, A., Cattaneo, A., Correggiari, A., and Langone, L. Stratigraphy of the late-Quaternary deposits in the central Adriatic basin and the record of short-term climatic events. Guilizzoni, P., and Old¢eld, F.L. Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic Sediments (PALICLAS). Memorie dell'Istituto Italiano di Idrobiologia 55, Pallanza, Italy (1996). 3964.Google Scholar
Tsoukala, E. Contribution to the study of the Pleistocene fauna of large mammals (Carnivora, Perissodactyla, Artiodactyla) from Petralona (Chalkidiki, N. Greece). Comptes Rendus. Académie des Sciences 312, II (1991). 331336.Google Scholar
Valdiosera, C.E., García, N., Anderung, C., Dalén, L., Crégut-Bonnoure, E., Kahlke, R.-D., Stiller, M., Brandström, M., Thomas, M.G., Arsuaga, J.L., Götherström, A., and Barnes, I. Staying out in the cold, glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Molecular Ecology 16, (2007). 51405148.Google Scholar
van Andel, T. Glacial environments I: the Weichselian climate in Europe between the end of the OIS-5 and the LGM. van Andel, T., and Davies, W. Neanderthals and Modern Humans in the European Landscape During the Last Glaciation. (2003). Mc Donald Institute Monographs, Cambridge. 919.Google Scholar
Villa, P., and Mahieu, E. Breakage patterns of human long bones. Journal of Human Evolution 21, (1991). 2748.Google Scholar
Weinstock, J. Epiphyseal fusion in brown bears: a population study of grizzlies (Ursus arctos horribilis) from Montana and Wyoming. International Journal of Osteoarchaeology 19, (2009). 416423.Google Scholar
Wolverton, S. Natural-trap ursid mortality and the Kurtén Response. Journal of Human Evolution 50, (2006). 540551.Google Scholar