Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:27:27.619Z Has data issue: false hasContentIssue false

Late Quaternary vegetation dynamics in a biodiversity hotspot, the Uluguru Mountains of Tanzania

Published online by Cambridge University Press:  20 January 2017

Jemma Finch*
Affiliation:
York Institute for Tropical Ecosystem Dynamics (KITE), Environment Department, University of York, Heslington, York, YO10 5DD, UK
Melanie J. Leng
Affiliation:
NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK
Rob Marchant
Affiliation:
York Institute for Tropical Ecosystem Dynamics (KITE), Environment Department, University of York, Heslington, York, YO10 5DD, UK
*
Corresponding author. Fax: +44 1904 432998.

E-mail address:[email protected] (J. Finch).

Abstract

Late Quaternary vegetation history and environmental changes in a biodiverse tropical ecosystem are inferred from pollen, charcoal and carbon isotope evidence derived from a ∼ 48,000-yr sedimentary record from the Uluguru Mountains, a component of the Eastern Arc Mountains of Kenya and Tanzania. Results indicate that Eastern Arc forest composition has remained relatively stable during the past ∼ 48,000 yr. Long-term environmental stability of the Eastern Arc forests has been proposed as a mechanism for the accumulation and persistence of species during glacial periods, thus resulting in the diverse forests observed today. The pollen and isotope data presented here indicate some marked changes in abundance but no significant loss in moist forest taxa through the last glacial maximum, thereby providing support for the long-term environmental stability of the Eastern Arc. Anthropogenic activities, including burning and forest clearance, were found to play a moderate role in shaping the mosaic of forest patches and high-altitude grasslands that characterise the site today; however, this influence was tempered by the inaccessibility of the mountain.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alin, S.R., Cohen, A.S., Bills, R., Gashagaza, M.M., Michel, E., Tiercelin, J.-J., Martens, K., Coveliers, P., Mboko, S.K., West, K., Soreghan, M., Kimbadi, S., and Ntakimazi, G. Elects of landscape disturbance on animal communities in Lake Tanganyika, East Africa. Conservation Biology 13, (1999). 10171033.CrossRefGoogle Scholar
Alin, S.R., O'Reilly, C.M., Cohen, A.S., Dettman, D.L., Palacios-Fest, M.R., and McKee, B.A. Elects of land-use change on aquatic biodiversity: a view from the paleorecord at Lake Tanganyika, East Africa. Geology 12, (2002). 11431146.2.0.CO;2>CrossRefGoogle Scholar
Association Des Palynologues De Langue Francaise (APLF), (1974). Pollen et spores d'Afrique tropicale. Travaux et Documents de Giographie Tropicale 16. Talence: Centre Nation de la Recherche Scientifique (CNRS), 282 pp.Google Scholar
Bagshawe, F.J., (1930). A report by the land development commissioner on the Uluguru Hills. Land Development Survey Report 3. TNA: 61/378/4.Google Scholar
Barker, P., Telford, R., Gasse, F., and Thevenon, R. Late Pleistocene and Holocene palaeohydrology of Lake Rukwa, Tanzania, inferred from diatom analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 187, (2002). 295306.CrossRefGoogle Scholar
Bonnefille, R. Atlas des pollens de Éthiopie. Principales espéces des forêts de montagne. Pollen et Spores 13, (1971). 1572.Google Scholar
Bonnefille, R., Hamilton, A.C., Linder, H.P., and Riollet, G. 30,000-year-old fossil Restionaceae pollen from Central Equatorial African and its biogeographical significance. Journal of Biogeography 17, (1990). 307314.Google Scholar
Bonnefille, R., and Riollet, G., (1980). Pollens des savanes d'Afrique Orientale. Éditions du Centre National de la Recherche Scientifique (CNRS). Paris, 140��pp.Google Scholar
Bonnefille, R., and Riollet, G. The Kashiru Pollen Sequence (Burundi): palaeoclimatic implications for the last 40,000 yr B.P. in tropical Africa. Quaternary Research 30, (1988). 1935.CrossRefGoogle Scholar
Bonnefille, R., Roeland, J.C., and Guiot, J. Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346, (1990). 347349.Google Scholar
Brenan, J.P.M. Some aspects of the phytogeography of tropical Africa. Annals of the Missouri Botanical Garden 65, (1978). 437478.CrossRefGoogle Scholar
Brown, E.T., Johnson, T.C., Scholz, C.A., Cohen, A.S., and King, J.W. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophysical Research Letters 34, (2007). L20702 http://dx.doi.org/10.1029/2007GL031240CrossRefGoogle Scholar
Burgess, N.D., Butynski, T.M., Cordeiro, N.J., Doggart, N., Fjeldså, J., Howell, K., Kilahama, F., Loader, S.P., Lovett, J.C., Mbilinyi, B., Menegon, M., Moyer, D., Nashanda, E., Perkin, A., Stanley, W., and Stuart, S. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biological Conservation 134, (2007). 209231.Google Scholar
Burgess, N.D., Balmford, A., Cordeiro, N.J., Fjeldså, J., Küper, W., Rahbek, C., Sanderson, E.W., Scharlemann, J.P.W., Sommer, J.H., and Williams, P.H. Correlations among species distributions, human density and human infrastructure across the high biodiversity tropical mountains of Africa. Biological Conservation 134, (2007). 164177.CrossRefGoogle Scholar
Burgess, N., Doggart, N., and Lovett, J.C. The Uluguru Mountains of eastern Tanzania: the effect of forest loss on biodiversity. Oryx 36, (2002). 140152.Google Scholar
Bush, M.B., Silman, M.R., and Urrego, D.H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, (2004). 827829.Google Scholar
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., and Ehleringer, J.R. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, (1997). 153158.CrossRefGoogle Scholar
Cerling, T.E., Ehleringer, J.R., and Harris, J.M. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London Series B 353, (1998). 159171.Google Scholar
Cohen, A.S., Talbot, M.R., Awramik, S.M., Dettman, D.L., and Abell, P. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society American Bulletin 109, (1997). 444460.2.3.CO;2>CrossRefGoogle Scholar
Cohen, A.S., Palacios-Fest, M.R., Dettman, D., Msaky, E., Livingstone, D., and McKee, B. Lake Tanganyika biodiversity project special study on sediment discharge and its consequences: paleolimnological investigations. Lake Tanganyika Biodiversity Project. (1999). Natural Resources Institute, Kent. 165pp Google Scholar
Cohen, A.S., Stone, J.R., Beuning, K.R.M., Park, L.E., Reinthal, P.N., Dettman, D., Scholz, C.A., Johnson, T.C., King, J.W., Talbot, M.R., Brown, E.T., and Ivory, S.J. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences 104, (2007). 1642216427.CrossRefGoogle ScholarPubMed
Colinvaux, P.A., De Oliveira, P.E., and Bush, M.B. Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypothesis. Quaternary Science Reviews 19, (2000). 141169.Google Scholar
Cowling, S.A., and Sykes, M.T. Physiological significance of low atmospheric CO2 for plant–climate interactions. Quaternary Research 52, (1999). 237242.Google Scholar
Diamond, A.W., and Hamilton, A.C. The distribution of forest passerine birds and Quaternary climatic change in tropical Africa. Journal of Zoology 191, (1980). 379402.Google Scholar
Ehleringer, J.R., Cerling, T.E., and Helliker, B.R. Photosynthesis, atmospheric CO2 and climate. Oecologia 112, (1997). 285299.CrossRefGoogle ScholarPubMed
Erickson, M.G., Bonnefille, R., and Lafon, S. Recent lake level variations in Lake Haubi, central Tanzania, interpreted from pollen and sediment studies. Journal of Palaeoclimatology 22, (1999). 457473.Google Scholar
Felton, A.A., Russell, J.M., Cohen, A.S., Baker, M.E., Chesley, J.T., Lezzar, K.E., McGlue, M.M., Pigati, J.S., Quade, J., Stager, J.C., and Tiercelin, J.J. Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika, Tropical East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 252, (2007). 405423.CrossRefGoogle Scholar
Fjeldså, J., and Lovett, J.C. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiversity and Conservation 6, (1997). 325346.CrossRefGoogle Scholar
Garcin, Y., Williamson, D., Taieb, M., Vincens, A., Mathe, P.E., and Majule, A. Multi-decennial to multi-millennial changes in maar-lake deposition during the last 45,000 year in South Tropical Africa (Lake Masoko, Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology 239, (2006). 334354.CrossRefGoogle Scholar
Garcin, Y., Vincens, A., Williamson, D., Guiot, J., and Buchet, G. Wet phases in tropical Southern Africa during the Last Glacial period. Geophysical Research Letters 33, (2006). L07703 http://dx.doi.org/10.1029/2005GL025531 (Online early articles) Google Scholar
Garcin, Y., Vincens, A., Williamson, D., Buchet, G., and Guiot, J. Abrupt resumption of the African monsoon at the Younger Dryas–Holocene climatic transition. Quaternary Science Reviews 26, (2007). 690704.CrossRefGoogle Scholar
Greenway, P.J. A classification of the vegetation of East Africa. Kirkia 9, (1973). 168.Google Scholar
Griffiths, C.J. The geological evolution of East Africa. Lovett, J.C., and Wasser, S.K. Biogeography and ecology of the rainforests of Eastern Africa. (1993). Cambridge University Press, Cambridge. 3355.Google Scholar
Grimm, E.C. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, (1987). 1335.Google Scholar
Grimm, E.C. TGView Version 2.0.2. (2004). Illinois State Museum, Springfield, IL.Google Scholar
Hamilton, A.C. The interpretation of pollen diagrams from highland Uganda. Palaeoecology of Africa 7, (1972). 45150.Google Scholar
Hamilton, A.C. The significance of patterns of distribution shown by forest plants and animals in tropical Africa for the reconstruction of upper Pleistocene palaeo-environments: a review. Palaeoecology of Africa 9, (1976). 6397.Google Scholar
Hamilton, A.C. Environmental history of East Africa: a study of the Quaternary. (1982). Academic Press, London, UK. 328pp Google Scholar
Hamilton, A.C. Vegetation and climate on Mt Elgon during the late Pleistocene and Holocene. Palaeoecology of Africa 18, (1987). 283304.Google Scholar
Hamilton, A.C., and Taylor, D. Late Quaternary mire sediments in tropical Africa: opportunities for further palynological studies. Palaeoecology of Africa 23, (1993). 207211.Google Scholar
Hamilton, A.C., Taylor, D., and Vogel, J.C. Early forest clearance and environmental degradation in south-west Uganda. Nature 320, (1986). 164167.Google Scholar
Hannah, L., Midgley, G.F., Hughes, G.O., and Bomhard, B. The view from the Cape: extinction risk, protected areas, and climate change. BioScience 55, (2005). 231242.Google Scholar
Hastenrath, S. The glaciers of equatorial East Africa. (1984). Reidel, Dordrecht. 353 pp Google Scholar
Hastenrath, S. Variations of East African climate during the past two centuries. Climatic Change 50, (2001). 209217.Google Scholar
Hooghiemstra, H., and van der Hammen, T. Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Science Reviews 44, (1998). 147183.Google Scholar
Hunt, C.O. Recent advances in pollen extraction techniques: a brief review. Fieller, N.R.J., Gilbertson, D.D., Ralph, N.G.A. Palaeobiological Investigations, British Archaeological Reports vol. 266, (1985). International Series (Oxford), 181187.Google Scholar
Jackson, S.T., and Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proceedings of the National Academy of Sciences 96, (1999). 1384713852.Google Scholar
Johnson, T.C., Chan, Y., Beuning, K., Kelts, K., Ngobi, G., and Verschuren, D. Biogenic silica profiles in Holocene cores from Lake Victoria: implications for lake level history and initiation of the Victoria Nile. Lehman, J.T. Environmental change and response in East African lakes. (1998). Kluwer, Dordrecht. 7589.Google Scholar
Jolly, D., and Haxeltine, A. Effect of low glacial atmospheric CO2 on tropical African montane vegetation. Science 276, (1997). 786788.Google Scholar
Jolly, D., Taylor, D.M., Marchant, R.A., Hamilton, A.C., Bonnefille, R., and Riolett, G. Vegetation dynamics in central Africa since 18,000 yr BP: pollen records from the interlacustrine highlands of Burundi, Rwanda and western Uganda. Journal of Biogeography 24, (1997). 495512.Google Scholar
Lange, S., Bussman, R.W., and Beck, E. Stand structure and regeneration of the subalpine Hagenia abyssinica forests of Mount Kenya. Botanica Acta 110, (1997). 473480.CrossRefGoogle Scholar
Linder, H.P. Plant diversity and endemism in sub-Saharan tropical Africa. Journal of Biogeography 28, (2001). 169182.CrossRefGoogle Scholar
Livingstone, D.A. Late Quaternary climatic change in Africa. Annual Review of Ecology and Systematics 6, (1975). 249280.Google Scholar
Lovett, J.C. Classification and status of the moist forests of Tanzania. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 23a, (1990). 287300.Google Scholar
Lovett, J.C. Eastern Arc moist forest flora. Lovett, J.C., and Wasser, S.K. Biogeography and ecology of the rainforests of Eastern Africa. (1993). Cambridge University Press, Cambridge. 3355.Google Scholar
Lovett, J.C., Ruffo, C.K., Gereau, R.E., and Taplin, J.R.D. Field guide to the moist forest trees of Tanzania. The Society for Environmental Exploration, UK and the University of Dar es Salaam, Tanzania. (1996). 344 pp Google Scholar
Lovett, J.C., and Pócs, T. Assessment of the condition of the Catchment Forest Reserves: a botanical appraisal, Iringa Region. Catchment Forestry Report 93.3, (1993). 38 pp Google Scholar
Lyamuya, V.E., Noah, L.G., Kilasara, M., Kirenga, E.J. and Burgess, N.D., (1994). Socio-economic and land-use factors affecting the degradation of the Uluguru Mountains catchment in Morogoro region, Tanzania. Regional Natural Resources Office, Morogoro, and the Royal Society for the Protection of Birds, Sandy, UK., 38��pp.Google Scholar
Mackie, E.A.V., Leng, M.J., Lloyd, J.M., and Arrowsmith, C. Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. Journal of Quaternary Science 20, (2005). 303312.Google Scholar
Maley, J. The African rain forest — main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Alexander, I.J., Swaine, M.D., and Watling, R. Essays on the Ecology of the Guinea-Congo rain forest. Proceedings of the Royal Society of Edinburgh 104B, (1996). 3173.Google Scholar
Marchant, R.A., and Hooghiemstra, H. ‘Letter to the Editor’. Climate of East Africa 6000 14C Yr B.P. as inferred from pollen data. By Odile Peyron, Dominique Jolly, Raymonde Bonnefille, Annie Vincens and Joël Guiot. Quaternary Research 56, (2001). 133135.Google Scholar
Marchant, R.A., and Hooghiemstra, H. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth Science Reviews 66, (2004). 217260.CrossRefGoogle Scholar
Marchant, R.A., Taylor, D., and Hamilton, A. Late Pleistocene and Holocene History at Mubwindi Swamp, Southwest Uganda. Quaternary Research 47, (1997). 316328.Google Scholar
Marchant, R.A., Behera, S., Yamagata, T., and Mumbi, C.T. The Indian Ocean Dipole — the unsung driver of climate variability in East Africa. African Journal of Ecology 45, (2006). 416.CrossRefGoogle Scholar
Masawe, J.L. Farming systems and agricultural production among small farmers in the Uluguru Mountain area, Morogoro Region, Tanzania. African Study Monographs 13, (1992). 171183.Google Scholar
McGlue, M.M., Lezzar, K.E., Cohen, A.S., Russell, J.M., Tiercelin, J.-J., Felton, A.A., Mbede, E., and Nkotagu, H.H. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. Journal of Paleolimnology 40, (2008). 635653.CrossRefGoogle Scholar
Meyers, P.A., and Teranes, J.L. Sediment organic matter. Last, W.M., and Smol, J.P. Tracking environmental change using lake sediments. Volume 2: Physical and geochemical methods. (2001). Kluwer Academic Publishers, Dordrecht, The Netherlands. 239270.Google Scholar
Mittermeier, C.G., Lamoreux, J., and da Fonseca, G.A.B. Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions. Distributed for Conservation International. (2005). 392 pp Google Scholar
Mumbi, C.T., Marchant, R., Hooghiemstra, H., and Wooller, M.J. Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. Quaternary Research 69, (2008). 326341.Google Scholar
Muzuka, A.N.N., Ryner, M., and Holmgren, K. 12,000-year, preliminary results of the stable nitrogen and carbon isotope record from the Empakaai Crater Lake sediments, Northern Tanzania. Journal of African Earth Sciences 40, (2004). 293303.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, A.B., and Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, (2000). 853858.CrossRefGoogle ScholarPubMed
Nicholson, S.E. A review of climate dynamics and climate variability in Eastern Africa. Johnson, T.C., and Odada, E.O. The Limnology, Climatology, and Paleoclimatology of the East African Lakes. (1996). Gordon and Breach Publishers, Amsterdam. 2556.Google Scholar
Pócs, T. Bioclimatic studies in the Uluguru Mountains (Tanzania, East Africa) II. Correlations between orography, climate and vegetation. Acta Botanica Academiae Scientarium Hungaricae 22, (1976). 163183.Google Scholar
Platts, P.J., McClean, C.J., Lovett, J.C., and Marchant, R. Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty. Ecological Modelling 218, (2008). 121134.Google Scholar
Prell, W.L., Hutson, W.H., Williams, D.F., Be, A., Geitzenauer, K., and Molfino, B. Surface circulation of the Indian Ocean during the Last Glacial Maximum, approximately 18,000 yr BP. Quaternary Research 14, (1980). 309336.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon, 46, (2004). 10261058.Google Scholar
Rodgers, W.A. The conservation of the forest resources of eastern Africa: past influences, present practices and future needs. Lovett, J.C., and Wasser, S.K. Biogeography and ecology of the rain forests of eastern Africa. (1993). Cambridge University Press, 341 pp Google Scholar
Ryner, M.A., Bonnefille, R., Holmgren, K., and Muzuka, A. Vegetation changes in Empakaai Crater, Northern Tanzania, at 14,800–9300 cal yr BP. Review of Palaeobotany and Palynology 140, (2006). 163174.Google Scholar
Ryner, M., Gasse, F., Rumes, B., and Verschuren, D. Climatic and hydrological instability in semi-arid equatorial East Africa during the late Glacial to Holocene transition: a multi-proxy reconstruction of aquatic ecosystem response in northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 248, (2007). 440458.Google Scholar
Rucina, S.M., Muiriri, V.M., Kinjanjui, R.N., McGuiness, K. and Marchant, R.A., in press. Late Quaternary vegetation and fire dynamics on Mount Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology.CrossRefGoogle Scholar
Ssemmanda, I., Vincens, A. Vegetation et climat dans le Bassin du lac Albert (ouganda, Zaire) depuis 13 000 ans B.P.: Apport de la palynologie 316, (1993). C.R. Academie Sciences Paris, 561567.Google Scholar
Stager, J.C., Cumming, B.F., and Meeker, D.L. A 10,000-year high-resolution diatom record from Pilkington Bay, Lake Victoria, East Africa. Quaternary Research 59, (1993). 172181.CrossRefGoogle Scholar
Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglington, G., Barker, P., Khelifa, L.B., Harkness, D.D., and Olago, D.O. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, (1997). 14221426.CrossRefGoogle ScholarPubMed
Stuiver, M., Reimer, P.J. and Reimer, R.W., (2005). CALIB REV 5.0.1. [www.calib.qub.ac.uk/calib].Google Scholar
Taylor, D.M. Late Quaternary pollen records from two Ugandan mires: evidence for environmental change in the Rukiga highlands of Southwest Uganda. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 283300.CrossRefGoogle Scholar
Temple, P.H. Soil and water conservation policies in the Uluguru Mountains, Tanzania. 54A, (1972). Geografiska Annaler, 110123.Google Scholar
Thévenon, F., Williamson, D., and Taieb, M. A 22 ka sedimentological record from Lake Rukwa, South-west Tanzania: environmental, chonostratigraphic and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 187, (2002). 285294.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.-N., Mikhalenko, V.N., Hardy, D.R., and Beer, J. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298, (2002). 593598.CrossRefGoogle ScholarPubMed
Tierney, J.E., Russell, J.M., Huang, Y., Sinninghe Damsté, J.S., Hopmans, E.C., and Cohen, A.S. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, (2008). 252255.Google Scholar
Vincens, A., Williamson, D., Thevenon, F., Taieb, M., Buchet, G., Decobert, M., and Thouveny, N. Pollen-based vegetation changes in southern Tanzania during the last 4200 years: climate change and/or human impact. Palaeogeography, Palaeoclimatology, Palaeoecology 198, (2003). 321334.CrossRefGoogle Scholar
Vincens, A., Buchet, G., Williamson, D., and Taieb, M. A 23,000 yr pollen record from Lake Rukwa (8°S, SW Tanzania): new data on vegetation dynamics and climate in Central Eastern Africa. Review of Palaeobotany and Palynology 137, (2005). 147162.CrossRefGoogle Scholar
Vincens, A., Garcin, Y., and Buchet, G. Influence of rainfall seasonality on African lowland vegetation during the Late Quaternary: pollen evidence from Lake Masoko, Tanzania. Journal of Biogeography 34, (2007). 12741288.Google Scholar
Wheeler, J., (2007). The implications of iron-working on the woodlands of Rievaulx and Bilsdale, North Yorkshire, United Kingdom: historical, palaeoecological and palaeoenvironmental perspectives circa 1068–2000. Unpublished PhD thesis, University of Bradford, .Google Scholar
White, F. The vegetation of Africa. (1983). UNESCO, Paris. 356 pp Google Scholar
Winkler, M. Charcoal analysis for palaeoenvironmental interpretation. Quaternary Research 23, (1985). 313326.Google Scholar
Young, R., and Fosbrooke, H. Smoke in the hills. Land and politics among the Luguru of Tanganyika. (1960). Routledge and Kegan Paul Ltd, UK. 212 pp Google Scholar