Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T19:59:02.052Z Has data issue: false hasContentIssue false

Late Holocene high resolution palaeoclimatic reconstruction inferred from Sebkha Mhabeul, southeast Tunisia

Published online by Cambridge University Press:  20 January 2017

L. Marquer*
Affiliation:
Département de Préhistoire, Muséum National d'Histoire Naturelle, UMR-CNRS 5198, France ECOLAB — Laboratoire d'Ecologie Fonctionnelle, Université de Toulouse, UMR-CNRS-UPS-INPT 5245, France
S. Pomel
Affiliation:
Laboratoire Environnement Tropical, Equipe DYMSET, Université de Bordeaux 3, UMR-CNRS 5185, France
A. Abichou
Affiliation:
Department of Geography, University of Tunis, Tunisia
E. Schulz
Affiliation:
Geographisches Institüt Am Hubland, Würzburg Universiteit, Germany
D. Kaniewski
Affiliation:
ECOLAB — Laboratoire d'Ecologie Fonctionnelle, Université de Toulouse, UMR-CNRS-UPS-INPT 5245, France
E. Van Campo
Affiliation:
ECOLAB — Laboratoire d'Ecologie Fonctionnelle, Université de Toulouse, UMR-CNRS-UPS-INPT 5245, France
*
*Corresponding author. Département de Préhistoire, Muséum National d'histoire naturelle, 1 rue René Panhard, 75013 Paris (France). Fax: +33 1 43 31 22 79. E-mail address:[email protected] (L. Marquer).

Abstract

Relations between climate change and landscape evolution during the last two millennia in southeastern coastal Tunisia have been documented using high-resolution reconstruction of flood history and fire activity in the Sebkha Mhabeul core. The age model, based on tephrochronology, indicates that the core extends from Roman to modern times and encompasses the well-defined climatic periods of the last two millennia. This record provides a first palaeoecological/palaeoclimatic high resolution reconstruction in North Africa using a cross-disciplinary approach with both physical (grey-scale intensity, quartz particles) and biological (charcoal and pollen) indicators. The flood history shows four wet/dry cycles (ca. AD 550–950, 950–1300, 1300–1570 and 1570–1870) of different duration. Major hydrological instabilities are concentrated during the Medieval Climate Anomalies and the early Little Ice Age, between AD 1000 and 1550. Direct correlation between climate and fire cannot be established suggesting that the fire history of the Sebkha environment is mainly influenced by human activity. This study demonstrates the great value of sebkhas as palaeoenvironmental archives.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asselin, H., Payette, S., (2005). Detecting local-scale fire episodes on pollen slides.. Review of Palaeobotany and Palynology 137, 3140.Google Scholar
Ballouche, A., Damblon, F., (1988). Nouvelles données palynologiques sur la végétation holocène du Maroc.. Institut français de Pondichéry 25, 8390.Google Scholar
Ben Tiba, B., Reille, M., (1982). Recherches pollenanalytiques dans les montagnes de Kroumirie (Tunisie septentrionale): premiers résultat.. Ecologia Mediterranea 8, (4) 7586.Google Scholar
Bottema, S., (1975). The interpretation of pollen spectra from prehistoric settlements (with special attention to Liguliflorae).. Palaeohistoria 17, 1835.Google Scholar
Bradley, R.S., Hughes, M.K., Diaz, H.F., (2003). Climate in Medieval Time.. Science 302, 404405.Google Scholar
Brun, A., (1983). Etude palynologique des sédiments marins holocènes de 5000 BP à l'actuel dans le golfe de Gabès (mer pélagienne).. Pollen et Spores XXV 3–4, 437460.Google Scholar
Butzer, K.W., (2005). Environmental history in the Mediterranean world: cross-disciplinary investigation of cause-and-effect for degradation and soil erosion.. Journal of Archaeological Science 32, 17731800.Google Scholar
Carcaillet, C., Bouvier, M., Fréchette, B., Larouche, A.C., Richard, P.J.H., (2001). Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history.. The Holocene 11, (4) 467476.Google Scholar
Carrion, J.S., Fuentes, N., Gonzales-Samperiz, P., Sanchez Quirante, L., Finlayson, J.C., Fernandez, S., Andrade, A., (2007). Holocene environmental change in a montane region of southern Europe with a long history of human settlement.. Quaternary Science Reviews 26, 14551475.Google Scholar
Cheddadi, R., Lamb, H.F., Giot, J., Van Der Kaars, S., (1998). Holocene climatic change in Morocco: a quantitative reconstruction from pollen data.. Climate Dynamics 14, 883890.Google Scholar
Clark, J.S., (1988). Stratigraphic charcoal analysis on petrographic thin sections : application to fire history in northwestern Minnesota.. Quaternary Research 30, 8191.Google Scholar
Damblon, F., (1991). Contribution pollenanalytique à l'histoire des forêts de chêne liège au Maroc: La subéraie de Krimda.. Palaeoecology of Africa 22, 171190.Google Scholar
Damblon, F., Vanden Berghen, C., (1993). Etude paléo-écologique (pollen et macrorestes) d'un dépôt tourbeux dans l'île de Djerba, Tunisie méridionale.. Palynosciences 2, 157172.Google Scholar
Davis, B.A.S., Stevenson, A.C., (2007). The 8.2ka event and Early? Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain.. Quaternary Science Reviews 26, 16951712.Google Scholar
Desprat, S., Sanchez Goni, M.F., Loutre, M.-F., (2003). Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data.. Earth and Planetary Science Letters 213, 6378.Google Scholar
Eastwood, W.J., Leng, M.J., Roberts, N., Davis, B., (2007). Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Gölhisar, southwest Turkey.. Journal of Quaternary Science 22, (4) 327341.Google Scholar
Faust, D., Zielhofer, C., Baena Escudero, R., Diaz del Olmo, F., (2004). High-resolution fluvial record of late Holocene geomorphic change in northern Tunisia: climatic or human impact? Quaternary Science Reviews 23, 17571775.Google Scholar
Jones, P.D., Mann, M.E., (2004). Climate over past millennia.. Reviews of Geophysics 42, 142.Google Scholar
Jones, M.D., Roberts, N., Leng, M.J., Türkes, M., (2006). A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate.. Geology 34, (5) 361364.Google Scholar
Keller, C.F., (2004). 1000 years of climate change.. Advances in Space Research 34, 315322.CrossRefGoogle Scholar
Lamb, H.F., Gasse, F., Benkadour, A., El Hamouti, N., Van Der Kaars, S., Perkins, W.T., Pearce, N.J., Roberts, N., (1995). Relation between century-scale Holocene arid intervals in tropical and temperate zones.. Nature 373, 134137.Google Scholar
Lakhdar, R., Soussi, M., Ben Ismail, M.H., M'Rabet, A., (2006). A Mediterranean Holocene restricted coastal laggon under arid climate: case of the sedimentary record of the Sabkha Boujmel (SE Tunisia).. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 177191.Google Scholar
Lebreiro, S.M., Frances, G., Abrantes, F.F.G., Diz, P., Bartels-Jonsdottir, H.B., Stroynowski, Z.N., Gil, I.M., Pena, L.D., Rodrigues, T., Jones, P.D., Nombela, M.A., Alejo, I., Briffa, K.R., Harris, I., Grimalt, J.O., (2006). Climate change and coastal hydrographic response along the Atlantic Iberian margin (Tagus Prodelta and Muros Ria) during the last two millennia.. The Holocene 16, (7) 10031015.Google Scholar
Le Houérou, H.N., (1969). La végétation de la Tunisie Steppique.. Annales de l'institut national de la recherche agronomique de Tunisie 42, 624 p.Google Scholar
Le Houérou, H.N., (2001). Biogeography of the arid steppeland north of the Sahara.. Journal of Arid Environments 48, 103128.Google Scholar
Lim, J., Matsumoto, E., Kitagawa, H., (2005). Eolian quartz flux variations in Cheju Island, Korea, during the last 6500 yr and a possible Sun-monsoon linkage.. Quaternary Research 64, 1220.CrossRefGoogle Scholar
Magny, M., de Beaulieu, J.L., Drecher-Schneider, R., Vannière, B., Walter-Simonnet, A.V., Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., Leroux, A., (2007). Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy).. Quaternary Science Reviews 26, 17361758.Google Scholar
Mann, M.E., Jones, P.D., (2003). Global surface temperatures over the past two millennia.. Geophysical Research Letters 30, 5154.Google Scholar
Mensing, S.A., Michaelsen, J., Byrne, R., (1999). A 560-year record of Santa Ana fires reconstructed from charcoal deposited in the Santa Barbara Basin, California.. Quaternary Research 51, (3) 295305.Google Scholar
Neumann, F.H., Kagan, E.J., Schwab, M.J., Stein, M., (2007). Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea.. Quaternary Science Reviews 26, (11–12) 14761498.Google Scholar
Patterson, W.A., Edwards, K.J., Maguire, D.J., (1987). Microscopic charcoal as a fossil indicator of fire.. Quaternary Science Reviews 6, 323.Google Scholar
Pederson, D.C., Peteet, D.M., Kurdyla, D., Guilderson, T., (2005). Medieval Warming, Little Ice Age, and European impact on the environment during the last millennium in the lower Hudson Valley, New York, USA.. Quaternary Research 63, 238249.Google Scholar
Reale, O., Dirmeyer, P., (2000). Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period.. Part I: Climate history and model sensitivity. Global and Planetary Change 25, 163184.Google Scholar
Reille, M., (1977). Contribution pollenanalytique à l'histoire holocène de la végétation des montagnes du Rif (Maroc Septentrional).. Recherches françaises sur le Quaternaire, supplément au Bulletin de l'AFEQ 1, (50) 5376.Google Scholar
Rhodes, A.N., (1998). A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores.. The Holocene 8, (1) 113117.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., Newman, J.H., (1999). An 15,000-year record of El Nino-driven alluviation in southwestern Ecuador.. Science 283, 516520.Google Scholar
Salamani, M., (1993). Premières données paléophytogéographiques du cèdre de l'Atlas (Cedrus atlantica) dans la région de Grande Kabylie (NE Algérie).. Palynosciences 2, 147155.Google Scholar
Schilman, B., Bar-Matthews, M., Almogi-Labin, A., Luz, B., (2001). Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene.. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 157176.Google Scholar
Schulz, E., Smykatz-Kloss, W., Abichou, H., Fromm, R., Pomel, S., Salzmann, U., Sponholz, B., Stengele, F., Ben Tiba, B., Hachicha, T., (1995). Zaderg environmental history of the semidesert region in southern Tunisia.. Geologisches Zentralblatt, Paläont. Teil I (3–4) 423440.Google Scholar
Schulz, E., Abichou, A., Hachicha, T., Pomel, S., Salzmann, U., Zouari, K., (2002). Sebkhas as ecological archives and the vegetation and landscape history of southern Tunisia during the last two millennia.. Journal of African Earth Sciences 34, 223229.Google Scholar
Sun, Y., Lu, H., An, Z., (2006). Grain size of loess, palaeosol and red clay deposits on the Chinese Loess Plateau : significance for understanding pedogenic alteration and palaeomonsoon evolution.. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 129138.Google Scholar
Stengele, F., Smykatz-Kloss, W., (1995). Mineralogical and geochemical study of holocene sebkha sediments in Southeastern Tunisia.. Chemide Erde 55, 241256.Google Scholar
Stevenson, A.C., Phethean, S.J., Robinson, J.E., (1993). The palaeosalinity and vegetational history of Garaet el Ichkeul, northwest Tunisia.. The Holocene 3, 201210.Google Scholar
Stuiver, M., Braziunas, T.F., Grootes, P.M., Zielinski, G.A., (1997). Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record? Quaternary Research 48, 259266.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Bur, G.S., Hughen, K.A., Kromer, B., McConrad, G., Van der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000–0 cal BP.. Radiocarbon 40, 10411083.Google Scholar
Till, C., Guiot, J., (1990). Reconstruction of precipitation in Morocco since 1100 AD based on Cerus atlantica tree-ring widths.. Quaternary Research 33, 337351.Google Scholar
Wiles, G.C., Barclay, D.J., Calkin, P.E., Lowell, T.V., (2008). Century to millennial-scale temperature variations for the last two thousand years indicated from glacial geologic records of Southern Alaska.. Global and Planetary Change 60, 115125.Google Scholar
Zicheng, Y., Ito, E., (2000). Historical solar variability and mid-continent drought.. Pages Newsl. 8, 67.Google Scholar