Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T21:28:37.892Z Has data issue: false hasContentIssue false

Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile

Published online by Cambridge University Press:  20 January 2017

Annette Kramer*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstrasse 74-100, 12249 Berlin, Germany
Ulrike Herzschuh
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
Steffen Mischke
Affiliation:
Freie Universitaet Berlin, Institute of Geological Sciences, Malteserstrasse 74-100, 12249 Berlin, Germany
Chengjun Zhang
Affiliation:
Lanzhou University, Centre for Arid Environment and Paleoclimate Research, Tianshui Road 298, Lanzhou 730000, China
*
*Corresponding author. Fax: +49(0)331288 2137.E-mail address:[email protected] (A. Kramer).

Abstract

We present a late glacial pollen record (17,700 to 8500 cal yr BP) from a Lake Naleng sediment core. Lake Naleng is located on the southeastern Tibetan Plateau (31.10°N 99.75°E, 4200 m) along the upper tree-line. Variations in the summer monsoon are evident from shifts in vegetation that correspond to late glacial climate trends from other monsoon-sensitive regions. Alpine steppe was recorded between 17,700 and 14,800 cal yr BP, indicating low effective moisture at the study site. Expansion of alpine meadows followed by advances in the position of tree-line around Lake Naleng suggest that climate became warmer and wetter between ∼ 14,800 and 12,500 cal yr BP, probably representing an enhancement of the Asian monsoon. Climatic cooling and reduced effective moisture are inferred from multivariate analysis and the upward retreat of tree-line between ∼ 12,500 and 11,700 cal yr BP. The timing and nature of these shifts to warm, wet and then cold, dry climatic conditions suggest that they correspond to the Bølling/Allerød and Younger Dryas intervals. Abies-Betula forests, representing warm and moist conditions, spread during the early Holocene.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Stafford, T.W., (1996). Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quaternary Research 45, 300311.CrossRefGoogle Scholar
Alley, R.B., Clark, P.U., (1999). The deglaciation of the northern hemisphere: a global perspective. Annual Review of Earth and Planetary Sciences 27, 149182.CrossRefGoogle Scholar
An, Z., (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
Aitchison, J., (1990). Relative variation diagrams for describing patterns of compositional variability. Mathematical Geology 22, 487511.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Beug, H.-J., (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, M"nchen., 542.Google Scholar
Böhner, J., (2006). General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, 279295.CrossRefGoogle Scholar
Chang, D.H.S., (1981). The vegetation zonation of the Tibetan Plateau. Mountain Research and Development 1, 2948.CrossRefGoogle Scholar
Chen, F., Bloemendal, J., Chang, P., Liu, G., (1999). An 800 kyr proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeography Palaeoclimatology Palaeoecology 151, 307320.CrossRefGoogle Scholar
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato, T., Birks, H.J.B., Boomer, I., Chen, C., An, C., W"nnemann, B., (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.CrossRefGoogle Scholar
Cour, P., Zheng, Z., Duzer, D., Calleja, M., Yao, Z., (1999). Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Review of Palaeobotany and Palynology 104, 183204.CrossRefGoogle Scholar
Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S., (2005). The role of seasonality in abrupt climate change. Quaternary Science Reviews 24, 11591182.CrossRefGoogle Scholar
Ding, M., Zhang, Y., Liu, L., Zhang, W., Wang, Z., Bai, W., (2007). The relationship between NDVI and precipitation on the Tibetan Plateau. Journal of Geographical Science .CrossRefGoogle Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave. China Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Fægri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4th ed John Wiley and Sons, London, UK. Google Scholar
Fontes, J.-C., Gasse, F., Gibert, E., (1996). Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 2547.CrossRefGoogle Scholar
Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., Petoukhov, V., (1998). The influence of vegetation"atmosphere"ocean interaction on climate during the mid-Holocene. Science 280, 19161919.CrossRefGoogle ScholarPubMed
Gasse, F., Arnold, M., Fontes, J.C., Gibert, E., Huc, A., Li, B., Li, Y., Liu, Q., Melieres, F., Van Campo, E., Wang, F., Zhan, Q., (1991). A 13,000 year climate record from western Tibet. Nature 353, 742745.CrossRefGoogle Scholar
Gasse, F., Fontes, J.C., Van Campo, E., Wei, K., (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, Ch., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., Bourges, F., (2006). Timing and dynamics of the last deglaciation from European and North African ?13C stalagmite profiles"comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews 25, 21182142.CrossRefGoogle Scholar
Geyh, M.A., Schotterer, U., Grosjean, M., (1998). Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40, 921931.CrossRefGoogle Scholar
Goswami, B.N., Madhusoodanan, M.S., Neema, C.P., Sengupta, D., (2006). A physical mechanism for the North Atlantic SST influence on the Indian summer monsoon. Geophysical Research Letters 33, .CrossRefGoogle Scholar
Graf, A., Strasky, S., Zhao, Z., Ivy-Ochs, S., Kubik, P.W., Baur, H.W., Wieler, R., Schlüchter, C., (2007). Cosmogenic nuclides concentrations indicate an ice advance during MIS-2 in the Monsoon influenced Shaluli Mountains, eastern Tibet. In: INQUA Abstracts 2007. Quaternary International 167-168, 485.Google Scholar
Grimm, E.C., (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares Source. Computers & Geosciences 13, 1335.CrossRefGoogle Scholar
Grimm, E.C., (2004). TGView 2.0.2 (software). Illinois State Museum. Springfield, Illinois. Google Scholar
Grootes, P., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Grootes, P.M, Stuiver, M., (1999). GISP2 Oxygen Isotope Data. doi:10.1594/PANGAEA.56094.Google Scholar
Gupta, A.K., Anderson, D.M., Overpeck, J.T., (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354356.CrossRefGoogle ScholarPubMed
Hahn, D.G., Manabe, S., (1975). The role of mountains in the south Asia monsoon. Journal of Atmospheric Science 32, 15151541.2.0.CO;2>CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., (2001). Southward Migration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Herzschuh, U., Zhang, C., Mischke, S., Herzschuh, R., Mohammadi, F., Mingram, B., K"rschner, H., Riedel, F., (2005). A late Quaternary lake record from the Qilian Mountains (NW China), evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data. Global and Planetary Change 46, 361379.CrossRefGoogle Scholar
Herzschuh, U., (2006). Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quaternary Science Reviews 25, 163178.CrossRefGoogle Scholar
Herzschuh, U., K"rschner, H., Mischke, S., (2006a). Temperature variability and vertical vegetation belt shifts during the last ?50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quaternary Research 66, 133146.CrossRefGoogle Scholar
Herzschuh, U., Winter, K., W"nnemann, B., Li, S., (2006b). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154-155 113121.CrossRefGoogle Scholar
Herzschuh, U., (2007). Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. Journal of Biogeography 34, 12651273.CrossRefGoogle Scholar
Herzschuh, U., Kramer, A., Mischke, S., Zhang, C., (2009). Quantitative climate and vegetation trends since the Late Glacial on the northeastern Tibetan Plateau inferred from Koucha Lake pollen record. Quaternary Research 71, 162171.CrossRefGoogle Scholar
Huang, R., (1987). Vegetation in the north-eastern part of the Qinghai-Xizang Plateau. H"vermann, J., Wang, W., Reports on the Northeastern Part of the Qinghai-Xizang (Tibet) Plateau by Sino-W. German Scientific Expedition. Science Press, Beijing., 438495.Google Scholar
Hong, Y.T., Hong, B., Lin, Q.H., Shibata, Y., Hirota, M., Zhu, Y.X., Leng, X.T., Wang, Y., Wang, H., Yi, L., (2005). Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Nino. Earth Planetary Science Letters 231, 337346.CrossRefGoogle Scholar
Hou, X., (2001). Vegetation Atlas of China. Science Press, Beijing., 260.Google Scholar
Ivanochko, T.S., Ganeshram, R.S., Brummer, G.-J.A., Ganssen, G., Jung, S.J.A., Moreton, S.G., Kroon, D., (2005). Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planetary Science Letters 235, 302314.CrossRefGoogle Scholar
Jacobson Jr., G.L., Bradshaw, R.H.W., (1981). The selection of sites for paleovegetational studies. Quaternary Research 16, 8096.CrossRefGoogle Scholar
Jarvis, D.I., Clay-Poole, S.T., (1992). A comparison of modern pollen rain and vegetation in southwestern Sichuan Province. China. Review of Palaeobotany and Palynology 75, 239258.CrossRefGoogle Scholar
Jarvis, D.I., (1993). Pollen evidence of changing Holocene monsoon climate in Sichuan Province. China. Quaternary Research 39, 325" 337.Google Scholar
Jobbagy, E.G., Jackson, R.B., (2000). Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography 9, 253268.CrossRefGoogle Scholar
Kienast, M., Steinke, S., Stattegger, K., Calvert, S.E., (2001). Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291, 21322134.CrossRefGoogle ScholarPubMed
Körner, C., Paulsen, J., (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography 31, 713732.CrossRefGoogle Scholar
Kramer, A, Herzschuh, U, Mischke, S, Zhang, C,in press. Late Quaternary environmental history of the southeastern Tibetan Plateau inferred from the Lake Naleng non-pollen palynomorph record. Vegetation History and Archaeobotany, doi:10.1029/2003GL017510.Google Scholar
Kultti, S., V"liranta, M., Sarmaja-Korjonen, K., Solovieva, N., Virtanen, T., Kauppila, T., Eronen, M., (2003). Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, northeast European Russia. Journal of Quaternary Sciences 18, 503520.CrossRefGoogle Scholar
Kutzbach, J.E., Bonan, G., Foley, J., Harrison, S.H., (1996). Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384, 623627.CrossRefGoogle Scholar
Kutzbach, J. E, Liu, X, Liu, Z, Chen, G., (2007). Simulation of the evolutionary response of global summer. Climate Dynamics monsoons to orbital forcing over the past 280,000 years, doi:10.1007/s00382-007-0308-z.Google Scholar
Leuschner, D.C., Sirocko, F., (2003). Orbital insolation forcing of the Indian Monsoon"a motor for global climate changes. Palaeogeography Palaeoclimatology Palaeoecology 197, 8395.CrossRefGoogle Scholar
Leonard, E.M., (1997). The relationship between glacial activity and sediment production: evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology 17, 319330.CrossRefGoogle Scholar
Lezine, A.-M., Tiercelin, J.J., Robert, C., Saliege, J.-F., Cleuziou, S., Inizan, M.-L., Braemer, F., (2007). Centennial to millennial-scale variability of the Indian monsoon during the early Holocene from a sediment, pollen and isotope record from the desert of Yemen Palaeogeography. Palaeoclimatology, Palaeoecology 243, 235249.CrossRefGoogle Scholar
Liu, H., Xu, L., Cui, H., (2002a). Holocene history of desertification along the woodland-steppe border in northern China. Quaternary Research 57, 259270.CrossRefGoogle Scholar
Liu, J., Yu, G., Chen, X., (2002b). Palaeoclimate simulation of 21 ka for the Tibetan Plateau and eastern Asia. Climate Dynamics 19, 575583.Google Scholar
Liu, X., Kutzbach, J.E., Liu, Z., An, Z., Li, L., (2003). The Tibetan Plateau as amplifier of orbitalscale variability of the East Asian monsoon. Geophysical Research Letters 30, 1839 .CrossRefGoogle Scholar
Meehl, G.A., (1994). Influence of the land surface in the Asian summer monsoon: external conditions versus internal feedbacks. Journal of Climate 7, 10331049.2.0.CO;2>CrossRefGoogle Scholar
Mischke, S., Herzschuh, U., Zhang, C., Bloemendal, J., Riedel, F., (2005). A late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Global and Planetary Change 46, 337359.CrossRefGoogle Scholar
Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U., Erzinger, J., (2008). Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeography, Palaeoclimatology, Palaeoecology 267, 5976.CrossRefGoogle Scholar
Mischke, S., Zhang, C., B"rner, A., Herzschuh, U., (2009). Lateglacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake. Journal of Quaternary Sciences 25, 162177.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen Analysis. 2nd ed. Blackwell Science, Oxford., 216.Google Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., (2003). A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13, 465476.CrossRefGoogle Scholar
Morrill, C., (2004). The influence of Asian summer monsoon variability on the water balance of a Tibetan lake. Journal of Paleolimnology 32, 273286.CrossRefGoogle Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., Liu, C.B., Shen, C., Tang, L., (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research 65, 232243.CrossRefGoogle Scholar
Olsson, I., (1979). A warning against radiocarbon dating of samples containing little carbon. Boreas 8, 203207.CrossRefGoogle Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., (1996). The southwest Indian Monsoon over the last 18,000 years. Climate Dynamics 12, 213225.CrossRefGoogle Scholar
Pawlowsky-Glahn, V., Egozcue, J.J., (2006). Compositional data and their analysis: an introduction Geological Society. London, Special Publications 264, 110.CrossRefGoogle Scholar
Prell, W.L., Kutzbach, J.E., (1992). Sensitivity of the Indian Monsoon to forcing parameters and implications for its evolution. Nature 360, 647652.CrossRefGoogle Scholar
Prentice, I.C., Guiot, J., Jolly, D., Cheddadi, R., (1996). Reconstructing biomes from Palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185194.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 26-0 kyr BP. Radiocarbon 46, 10291058.Google Scholar
Schlütz, F., (1999). Palynologische Untersuchungen "ber die holoz"ne Vegetations-, Klima-, und Siedlungsgeschichte in Hochasien (Nanga Parbat, Karakorum, Nianbaoyeze, Lhasa) und das Pleistoz"n (Qinling-Gebirge, Gaxun-Nur). Dissertationes Botanice 315, . Google Scholar
Shakun, J.D., Burns, S.J., Fleitmann, D., Kramers, J., Matter, A., Al-Subary, A., (2007). A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth and Planetary Science Letters 259, 442456.CrossRefGoogle Scholar
Shen, J., Liu, X., Wang, S., Matsumoto, R., (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131140.Google Scholar
Shen, C., Liu, K., Tang, L., Overpeck, J.T., (2006a). Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Review of Palaeobotany and Palynology 140, 6177.CrossRefGoogle Scholar
Shen, J., Jones, R.T., Yang, X., (2006b). The Holocene vegetation history of Lake Erhai, Yunnan province, southwestern China: the role of climate and human forcings. The Holocene 16, 265276.CrossRefGoogle Scholar
Seppä, H., Hicks, S., (2006). Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quaternary Science Reviews 25, 15011516.CrossRefGoogle Scholar
Strasky, S., (2008). Glacial response to global climate changes: cosmogenic nuclide chronologies from high and low latitudes. Dissertation ETH No. 17569, Z"rich.Google Scholar
Stuiver, M., (1978). Radiocarbon timescale tested against magnetic and other timescales. Nature 273, 271274.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stuiver, M., Grootes, P.M., Braziunas, T.F., (1995). The GISP2 [delta]18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, 341354.CrossRefGoogle Scholar
Taylor, A.H., Qin, Z., (1988). Tree replacement patterns in subalpine Abies-Betula forests, Wolong Natural Reserve, China. Plant Ecology 78, 141152.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Lin, P.N., Henderson, K.A., Mashiotta, T.A., (2005). Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales. Journal of Quaternary Science 20, 723733.CrossRefGoogle Scholar
Tschudi, S., Sch"fer, J.M., Zhao, Z., Wu, X., Ivy-Ochs, S., Kubik, P.W., Schlüchter, Ch, (2003). Glacial advances in Tibet during Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne. Journal of Asian Earth Sciences 22, 301306.CrossRefGoogle Scholar
Van Campo, E., Gasse, F., (1993). Pollen and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (West Tibet) since 13000 yr BP. Quaternary Research 39, 300312.CrossRefGoogle Scholar
Van Campo, E., Cour, P., Sixuan, H., (1996). Holocene environmental changes in Bangong Co Basin (West Tibet), Part 2: the pollen record. Palaeogeography Palaeoclimatology Palaeoecology 120, 4964.CrossRefGoogle Scholar
Wagner, B., Melles, , (2002). Holocene environmental history of western Ymer ", East Greenland, inferred from lake sediments. Quaternary International 89, 165176.CrossRefGoogle Scholar
Wang, L., Sarntheim, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., (1999). East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156, 245284.CrossRefGoogle Scholar
Wang, Y., Cheng, H., Edwards, R.L., An, Z., Wu, J., Shen, C., Dorale, J.A., (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave. China. Science 294, 23452348.Google ScholarPubMed
Winkler, D., (1996). Forest economy and deforestation in the Tibetan Prefectures of West Sichuan. Commonwealth Forestry Review 75, 296301.Google Scholar
Wolfe, A.P., Miller, G., Olsen, C., Forman, S.L., Doran, P.T., Holmgren, S.U., (2004). Geochronology of high latitude lake sediments. Pienitz, R., Douglas, M.S.V., Smol, J.P., Long-Term Environmental Change in Arctic and Antarctic Lakes. Springer, New York., 1952.CrossRefGoogle Scholar
Wu, H., Guiot, J., Brewer, S., Guo, Z., Peng, C., (2007). Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa. Proceedings of the National Academy of Sciences 104, 97209724.CrossRefGoogle ScholarPubMed
Xue, Y., Juang, H.-M.H., Li, W.-P., Prince, S., DeFries, R., Jiao, Y., Vasic, R., (2004). Role of land surface processes in monsoon development: East Asia and West Africa. Journal of Geophysical Research 109, D03105 .CrossRefGoogle Scholar
Yan, G., Wang, F., Shi, G., Li, S., (1999). Palynological and stable isotopic study of palaeoenvironmental changes on the northeastern Tibetan plateau in the last 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 153, 147159.CrossRefGoogle Scholar
Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., Haug, G.H., (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, 7479.CrossRefGoogle ScholarPubMed
Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S.P., Huang, C., Ke, M., Kong, Z., Li, S., Li, W., Liew, P., Liu, J., Liu, Q., Liu, K.-B., Prentice, I.C., Qui, W., Ren, G., Song, C., Sugita, S., Sun, X., Tang, L., Van Campo, E., Xia, Y., Xu, Q., Yan, S., Yang, X., Zhao, J., Zheng, Z., (2000). Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography 27, 635664.CrossRefGoogle Scholar
Yu, G., Tang, L., Yang, X., Ke, X., (2001). Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecology and Biogeography 10, 503519.CrossRefGoogle Scholar
Yu, J., Kelts, K.R., (2002). Abrupt changes in climatic conditions across the late-glacial/Holocene transition on the N. E. Tibet-Qinghai Plateau: evidence from Lake Qinghai, China. Journal of Paleolimnology 28, 195206.Google Scholar
Zhang, C., Mischke, S., (2009). A Late glacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau. Quaternary Science Reviews 28, 19701983.CrossRefGoogle Scholar
Zhao, J.-X., Wang, Y., Collerson, K.D., Gagan, M.K., (2003). Speleothem U-series dating of semi-synchronous climate oscillations during the last deglaciation. Earth Planetary Science Letters 216, 155161.CrossRefGoogle Scholar
Zhao, Y., Yu, Z., Chen, F., Ito, E., Zhao, C., (2007). Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology 145, 275288.CrossRefGoogle Scholar
Zhao, Y., Yu, Z., Chen, F., (2009). Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quaternary International 194, 618.CrossRefGoogle Scholar