Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T03:27:06.414Z Has data issue: false hasContentIssue false

Late Glacial Lake-Level Changes in the Lake Karakul Basin (a Closed Glacierized-Basin), eastern Pamirs, Tajikistan

Published online by Cambridge University Press:  20 January 2017

Tetsuya Komatsu*
Affiliation:
Faculty of Environmental Earth Science, Hokkaido University, W-5, N-10, Sapporo 060-0810, Japan
Sumiko Tsukamoto
Affiliation:
Leibniz Institute for Applied Geophysics, Stilleweg 2, Hannover 30655, Germany
*
*Corresponding author. E-mail address:[email protected] (T. Komatsu).

Abstract

The lake-level variations during the Late Glacial in the Lake Karakul basin (a closed glacierized-basin), in the northernmost part of the eastern Pamirs, were reconstructed using geomorphological and sedimentological evidence, with a chronology developed using luminescence ages from sand-sized quartz and K-feldspar in the lake sediments. Lake transgression started before ~ 19 ka, with the peak water level of ~ 35 m above the present elevation occurring at ~ 15 ka. This was synchronous with a significant advance of the glacier in the catchment. Stepwise lake regression, including a rapid lowering of the lake level (~ 13 m at ~ 12 ka), persisted until at least ~ 10 ka. Lake transgression and localized glacier expansion from ~ 19 to ~ 15 ka likely correlate with the more regional Late Glacial glacier advances across the semi-arid western Himalayan–Tibetan orogen and the eastern Pamirs. The longer-term trend of this lake transgression was probably caused by colder and/or wetter climatic conditions, forcing a notable glacier advance.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowski, U., Bergau, A., Seebach, D., Zech, R., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. (2006). Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan).. Quat. Sci. Rev. 25, 10801096.CrossRefGoogle Scholar
Adams, K.D. (2007). Late Holocene sedimentary environments and lake-level fluctuations at Walker Lake, Nevada, USA.. Geol. Soc. Am. Bull. 119, 126139.CrossRefGoogle Scholar
Auclair, M., Lamothe, M., and Huot, S. (2003). Measurement of anomalous fading for feldspar IRSL using SAR.. Radiat. Meas. 37, 487492.Google Scholar
Balescu, S., Ritz, J.-F., Lamothe, M., Auclair, M., and Todbileg, M. (2007). Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay mountains, Mongolia.. Quat. Geochronol. 2, 290295.Google Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., and Reches, Z. (2002). Lake levels and sequence stratigraphy of Lake Lisan, the late Pleistocene precursor of the Dead Sea.. Quat. Res. 57, 921.CrossRefGoogle Scholar
Bazhev, A.B., Kotlyakov, V.M., Rototayeva, O.V., and Varnakova, G.M. (1975). The problems of present-day glaciation of the Pamir-Alai. Proceedings of the Moscow Symposium, 1971.. IAHS Publ. 104, 1121.Google Scholar
Blair, T.C. (1999). Sedimentology of gravelly Lake Lahontan highstand shoreline deposits, Churchill Butte, Nevada, USA.. Sediment. Geol. 123, 199218.Google Scholar
Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., and Sohbati, R. (2012). A robust method for increasing the age range of feldspar IRSL dating.. Boreas 41, 435451.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. (2009). The Last Glacial Maximum.. Science 325, 710714.CrossRefGoogle ScholarPubMed
Denby, P.M., Bøtter-Jensen, L., Murray, A.S., Thomsen, K.J., and Moska, P. (2006). Application of pulsed OSL to the sepration of the luminescence components from a mixture of quartz/feldspar samples.. Radiat. Meas. 41, 774779.Google Scholar
Dortch, J.M., Owen, L.A., and Caffee, M.W. (2013). Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen.. Quat. Sci. Rev. 78, 188208.CrossRefGoogle Scholar
Guérin, G., Mercier, N., and Adamiec, G. (2011). Dose-rate conversion factors: update.. Ancient TL 29, 58.Google Scholar
Huntley, D.J., and Baril, M.R. (1997). The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating.. Ancient TL 15, 1113.Google Scholar
Huntley, D.J., and Lamothe, M. (2001). Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating.. Can. J. Earth Sci. 38, 10931106.Google Scholar
Komatsu, T. (2009). Field photographs of geomorphic features in the Lake Karakul region, eastern Pamirs.. Geogr. Stud. 84, 4450.Google Scholar
Komatsu, T., Watanabe, T., and Hirakawa, K. (2010). A framework for Late Quaternary lake-level fluctuations in Lake Karakul, eastern Pamir, focusing on lake–glacier landform interaction.. Geomorphology 119, 198211.CrossRefGoogle Scholar
Li, B., Jacobs, Z., Roberts, R.G., and Li, S.H. (2014). Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence.. Geochronometria 10.2478/s13386-013-0160-3.Google Scholar
Mischke, S., Rajabov, I., Mustaeva, N., Zhang, C., Herzschuh, U., Boomer, I., Brown, E.T., Anderson, N., Myrbo, A., Ito, E., and Schudack, M.E. (2010). Modern hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan): a reconnaissance study.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 289, 1024.Google Scholar
Murray, A.S., and Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol.. Radiat. Meas. 32, 5773.Google Scholar
Murray, A.S., Thomsen, K.J., Masuda, F., Buylaert, J.P., and Jain, M. (2012). Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals.. Radiat. Meas. 47, 688695.CrossRefGoogle Scholar
Nöth, L. (1932). Geologische Untersuchungen im Nordwestlichen Pamir-Gebiet und Mittleren Trans-Alai.. In: Ficker, H.v., Rickmers, W.R. (Eds.), Wissenschaftliche Ergebnisse der Alai-Pamir Expedition 1928, Part II. Reimer-Vohsen, Berlin. (204 pp).Google Scholar
Owen, L.A., and Dortch, J.M. (2014). Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen.. Quat. Sci. Rev. 88, 1454.Google Scholar
Owen, L.A., Chen, J., Hedrick, K.A., Caffee, M.W., Robinson, A.C., Schoenbohm, L.M., Yuan, Z., Li, W., Imrecke, D.B., and Liu, J. (2012). Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir.. Quat. Sci. Rev. 47, 5672.Google Scholar
Prescott, J.R., and Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations.. Radiat. Meas. 23, 497500.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., and Röthlisberger, R. (2006). A new Greenland ice core chronology for the last glacial termination.. J. Geophys. Res. 111, 10.1029/2005JD006079.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., and van der Plicht, J. (2013). IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP.. Radiocarbon 55, 18691887.Google Scholar
Röhringer, I., Zech, R., Abramowski, U., Sosin, P., Aldahan, A., Kubik, P.W., Zöller, L., and Zech, W. (2012). The Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating.. Quat. Res. 78, 590597.Google Scholar
Schmidt, E.D., Tsukamoto, S., Frechen, M., and Murray, A.S. (2014). Elevated temperature IRSL dating of loess sections in the East Eifel region of Germany.. Quat. Int. 334335., 141154.Google Scholar
Seong, Y.B., Owen, L.A., Yi, C., and Finkel, R.C. (2009). Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet.. Geol. Soc. Am. Bull. 121, 348365.Google Scholar
Taft, L., Mischke, S., Wiechert, U., Leipe, C., Rajabov, I., and Riedel, F. (2014). Sclerochronological oxygen and carbon isotope ratios in Radix (Gastropoda) shells indicate changes of glacial meltwater flux and temperature since 4,200 cal yr BP at Lake Karakul, eatstern Pamirs (Tajikistan).. J. Paleolimnol. 10.1007/s10933-014-9776-4.CrossRefGoogle Scholar
Thiel, C., Buylaert, J.P., Murray, A.S., Terhorst, B., Hofer, I., Tsukamoto, S., and Frechen, M. (2011). Luminescence dating of the Stratzing loess profile (Austria)–testing the potential of an elevated temperature post-IR IRSL protocol.. Quat. Int. 234, 2331.Google Scholar
Thomsen, K.J., Jain, M., Murray, A.S., Denby, P.M., Roy, N., and Bøtter-Jensen, L. (2008). Minimizing feldspar OSL contamination in quartzUV-OSL using pulsed blue stimulation.. Radiat. Meas. 43, 752757.Google Scholar
Velichko, A.A., and Lebedeva, I.M. (1973). Reconstruction of the upper Pleistocene glaciation of East Pamir.. Geoforum 16, 6774.Google Scholar
Williams, M.W., and Konovalov, V.G. (2008). Central Asia Temperature and Precipitation Data, 1879–2003.. USA National Snow and Ice Data Center. Digital media, Boulder, Colorado.Google Scholar
Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. (2005a). Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages.. Quat. Res. 64, 212220.Google Scholar
Zech, R., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. (2005b). Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains from surface exposure dating.. Earth Planet. Sci. Lett. 237, 453461.Google Scholar
Supplementary material: File

Komatsu and Tsukamoto supplementary material

Figure

Download Komatsu and Tsukamoto supplementary material(File)
File 46.6 KB