Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T06:48:03.409Z Has data issue: false hasContentIssue false

Lake Level Reconstruction for 12.8–2.3 ka of the Ngangla Ring Tso Closed-Basin Lake System, Southwest Tibetan Plateau

Published online by Cambridge University Press:  20 January 2017

Adam M. Hudson*
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, USA
Jay Quade
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ, USA
Tyler E. Huth
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
Guoliang Lei
Affiliation:
College of Geographical Sciences, Fujian Normal University, Fujian 350007, China
Hai Cheng
Affiliation:
Institute of Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
Lawrence R. Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
John W. Olsen
Affiliation:
School of Anthropology, University of Arizona, Tucson, AZ, USA
Hucai Zhang
Affiliation:
College of Tourism and Geography, Yunnan Normal University, Kunming 650500, China
*
*Corresponding author. E-mail address:[email protected] (A.M. Hudson).

Abstract

We present a shoreline-based, millennial-scale record of lake-level changes spanning 12.8–2.3 ka for a large closed-basin lake system on the southwestern Tibetan Plateau. Fifty-three radiocarbon and eight U–Th series ages of tufa and beach cement provide age control on paleoshorelines ringing the basin, supplemented by nineteen ages from shell and aquatic plant material from natural exposures generally recording lake regressions. Our results show that paleo-Ngangla Ring Tso exceeded modern lake level (4727 m asl) continuously between ~ 12.8 and 2.3 ka. The lake was at its highstand 135 m (4862 m asl) above the modern lake from 10.3 ka to 8.6 ka. This is similar to other closed-basin lakes in western Tibet, and coincides with peak Northern Hemisphere summer insolation and peak Indian Summer Monsoon intensity. The lake experienced a series of millennial-scale oscillations centered on 11.5, 10.8, 8.3, 5.9 and 3.6 ka, consistent with weak monsoon events in proxy records of the Indian Summer Monsoon. It is unclear whether these events were forced by North Atlantic or Indian Ocean conditions, but based on the abrupt lake-level regressions recorded for Ngangla Ring Tso, they resulted in significant periodic reductions in rainfall over the western Tibetan Plateau throughout the Holocene.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benson, L.V., and Paillet, F.L. (1989). The use of total lake-surface area as an indicator of climatic change: examples from the Lahontan Basin.. Quat. Res. 32, 262275.Google Scholar
Benson, L., Kashgarian, M., and Rubin, M. (1995). Carbonate deposition, Pyramid Lake subbasin, Nevada: 2. Lake levels and polar jet stream positions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan basin.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 117, 130.Google Scholar
Berger, A., and Loutre, M.F. (1991). Insolation values for the climate of the last 10 million years.. Quat. Sci. Rev. 10, 297317.Google Scholar
Beukema, S.P., Krishnamurthy, R.V., Juyal, N., Basavaiah, N., and Singhvi, A.K. (2011). Monsoon variability and chemical weathering during the late Pleistocene in the Goriganga basin, higher central Himalaya, India.. Quat. Res. 75, 597604.Google Scholar
Blard, P.-H., Sylvestere, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., Seidel, J.-L., Vimeux, F., Moreau, C., Dumoulin, J.-P., and Lavé, J. (2011). Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and δ18O of carbonates.. Quat. Sci. Rev. 30, 39733989.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffman, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene.. Science 294, 21302136.Google Scholar
Bookhagen, B. (2010). Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomatics.. Nat. Hazards Risk 1, 3750.CrossRefGoogle Scholar
Boos, W.R., and Kuang, Z. (2010). Dominant control of the South Asian monsoon by orographic insulation versus plateau heating.. Nature 463, 218222.Google Scholar
Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R.L., Wang, X., Tan, L., Liang, F., Wang, J., and Kelly, M. (2012). The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections.. Earth Planet. Sci. Lett. 335, 135144.Google Scholar
Cheng, H., Edwards, R.L., Shen, C., Polyak, V.J., and Asmerom, Y. (2000). The half-lives of uranium-234 and thorium-230.. Chem. Geol. 169, 1733.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X.G., Wang, Y.J., Zhang, R., and Wang, X.F. (2009). Ice Age terminations.. Science 326, 248252.Google Scholar
Cheng, H., Sinha, A., Wang, X., Cruz, F.W., and Edwards, R.L. (2012). The Global Paleomonsoon as seen through speleothem records from Asia and the Americas.. Clim. Dyn. 39, 10451062.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y.J., Kong, X.G., Spotl, C., Wang, X.F., and Alexander, E.C. (2013). Improvements in Th-230, Th-230 and U-234 half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry.. Earth Planet. Sci. Lett. 371, 8291.Google Scholar
Conroy, J.L., and Overpeck, J.T. (2011). Regionalization of present-day precipitation in the greater monsoon region of.. J. Clim. 24, 40734095.Google Scholar
Darby, D.A., Ortiz, J.D., Grosch, C.E., and Lung, S.P. (2012). 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift.. Nat. Geosci. 5, 897900.CrossRefGoogle Scholar
Demske, D., Tarasov, P.E., Wünneman, B., and Riedel, F. (2009). Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 172185.CrossRefGoogle Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J. (2005). A high-resolution absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China.. Earth Planet. Sci. Lett. 233, 7186.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. (2003). Holocene forcing of the Indian Monsoon recorded in a stalagmite from southern Oman.. Science 300, 17371739.Google Scholar
Gasse, F., Fontes, J.C., Van Campo, E., and Wei, K. (1996). Holocene environmental changes in Banggong Co basin (western Tibet). 4. Discussion and conclusions.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 120, 7992.CrossRefGoogle Scholar
Goswami, B.N., Madhusoodanan, M.S., Neema, C.P., and Sengupta, D. (2006). A physical mechanism for North Atlantic SST influence on the Indian summer monsoon.. Geophys. Res. Lett. 33, 10.1029/2005GL024803(L02706).CrossRefGoogle Scholar
Gupta, A., Anderson, D.M., and Overpeck, J.T. (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean.. Nature 421, 354357.Google Scholar
Gupta, A.K., Das, M., and Anderson, D.M. (2005). Solar influence on the Indian summer monsoon during the Holocene.. Geophys. Res. Lett. 32, 10.1029/2005GL022685(L17703).CrossRefGoogle Scholar
Herzschuh, U., Winter, K., Wünneman, B., and Li, S. (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra.. Quat. Int. 154–155, 113121.Google Scholar
Hou, J., D'Andrea, W.J., and Liu, Z. (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.. Quat. Sci. Rev. 48, 6779.Google Scholar
Hudson, A.M., and Quade, J. (2013). Long term east–west asymmetry in monsoon climate on the Tibetan Plateau.. Geology 41, 351354.Google Scholar
Jaffey, A.H., Flynn, K.F., Glendeni, L.E., Bentley, W.C., and Essling, A.M. (1971). Precision measurement of half-lives and specific activities of 235U and 238U.. Phys. Rev. C 4, 18891906.Google Scholar
Juyal, N., Pant, R.K., Basavaiah, N., Yadava, M.G., Saini, N.K., and Singhvi, A.K. (2004). Climate and seismicity in the higher Central Himalaya during 20–10 ka: evidence from the Bargayang basin, Uttaranchal, India.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 315330.CrossRefGoogle Scholar
Kapp, P., Taylor, M., Stockli, D., and Ding, L. (2008). Development of active low-angle normal fault systems during orogenic collapse: insight from Tibet.. Geology 36, 710.CrossRefGoogle Scholar
Kashiwaya, K., Masuzawa, T., Morinaga, H., Yaskawa, K., Yuan, B., Liu, J., and Gu, Z. (1995). Changes in hydrological conditions in the central Qing-Zang (Tibetan) Plateau inferred from lake bottom sediments.. Earth Planet. Sci. Lett. 135, 3139.CrossRefGoogle Scholar
Kodera, K. (2004). Solar influence on the Indian Ocean Monsoon through dynamical processes.. Geophys. Res. Lett. 31, 10.1029/2004GL020928L24209.Google Scholar
Kong, P., Na, C., Fink, D., Huang, F., and Ding, L. (2007). Cosmogenic 10Be inferred lake-level changes in Sumxi Co basin, western Tibet.. J. Asian Earth Sci. 29, 698703.Google Scholar
Kramer, A., Herzschuh, U., Mischke, S., and Zhang, C. (2010). Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen.. Quat. Res. 73, 324335.Google Scholar
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package.. J. Atmos. Ocean. Technol. 15, 809817.Google Scholar
Lao, Y., and Benson, L. (1988). Uranium-series age estimates and paleoclimatic significance of Pleistocene tufas from the Lahontan Basin, California and Nevada.. Quat. Res. 30, 165176.Google Scholar
Lee, J., Li, S., and Aitchison, J.C. (2009). OSL dating of paleoshorelines at Lagkor Tso, western Tibet.. Quat. Geochronol. 4, 335343.Google Scholar
Lei, G.L., Zhang, H.C., Li, Z.Z., Hudson, A.M., Zhu, Y., Jiang, X.Y., Chen, X.L., Chang, F.Q., and Li, H.Y. (2013). Geochemical features and significance of shoreline tufas from a closed-basin lake Ngangla Ring Tso in the western Tibetan Plateau.. Quat. Sci. 33, 839847.(in Chinese).Google Scholar
Levin, I., Kromer, B., and Hammer, S. (2013). Atmospheric –14CO2 trend in Western European background air from 2000 to 2012.. Tellus B 65, 20092.Google Scholar
Li, Q., Lu, H., Zhu, L., Wu, N., Wang, J., and Lu, X. (2011). Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP.. The Holocene 21, 939950.CrossRefGoogle Scholar
Liu, K.B., Yao, Z., and Thompson, L.G. (1998). A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai–Tibetan Plateau.. Geology 26, 135138.2.3.CO;2>CrossRefGoogle Scholar
Long, H., Lai, Z.P., Frenzel, P., Fuch, M., and Haberzettl, T. (2012). Holocene moist period recorded by the chronostratigraphy of a lake sedimentary sequence from Lake Tangra Yumco on the south Tibetan Plateau.. Quat. Geochronol. 10, 136142.CrossRefGoogle Scholar
Lu, X., Zhu, L., Nishimura, M., Morita, M., Watanabe, T., Nakamura, T., and Wang, Y. (2011). A high-resolution environmental change record since 19 cal ka BP in Pumoyum Co, southern Tibet.. Chin. Sci. Bull: Geol. 56, 29312940.Google Scholar
Luo, F., Li, S., and Furevik, T. (2011). The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon in Bergen Climate Model Version 2.0.. J. Geophys. Res. 116, D19117 10.1029/2011JD015848.Google Scholar
McGee, D., Quade, J., Edwards, R.L., Broecker, W.S., Cheng, H., Reiners, P.W., and Evenson, N. (2012). Lacustrine cave carbonates: novel archives of paleohydrologic change in the Bonneville Basin (Utah, USA).. Earth Planet. Sci. Lett. 351, 182194.CrossRefGoogle Scholar
Mifflin, M.D., and Wheat, M.M. (1979). Pluvial Lakes and Estimated Pluvial Climates of Nevada. Nevada Bureau of Mines and Geology, Reno, Nevada.(57p).Google Scholar
Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U., and Erzinger, J. (2008). Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 267, 5976.Google Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., Liu, K.-B., Shen, C.M., and Tang, L.Y. (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet.. Quat. Res. 65, 232243.Google Scholar
Mügler, I., Gleixner, G., Gunther, F., Mäusbacher, R., Daut, G., Schütt, B., Berking, J., Schwalb, A., Schwark, L., Xu, B., Yao, T., Zhu, L., and Yi, C. (2010). A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, central Tibet.. J. Paleolimnol. 43, 625648.Google Scholar
Owen, L.A. (2009). Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet.. Quat. Sci. Rev. 28, 21502164.Google Scholar
Pan, B., Yi, C., Jiang, T., Dong, G., Hu, G., and Jin, Y. (2012). Holocene lake-level changes of Linggo Co in central Tibet.. Quat. Geochronol. 10, 117122.Google Scholar
Placzek, C., Quade, J., and Patchett, P.J. (2006). Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change.. Geol. Soc. Am. Bull. 118, 515532.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. (2009). INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP.. Radiocarbon 51, 11111150.Google Scholar
Rupper, S., and Roe, G. (2008). Glacier changes and regional climate: a mass and energy balance approach.. J. Clim. 21, 53845401.Google Scholar
Rupper, S., Roe, G., and Gillespie, A. (2009). Spatial patterns of Holocene glacier advance and retreat in Central Asia.. Quat. Res. 72, 337346.Google Scholar
Seki, O., Meyers, P.A., Yamamoto, S., Kawamura, K., Nakatsuka, T., Zhou, W., and Zheng, Y. (2011). Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China.. Geology 39, 875878.Google Scholar
Seong, Y.B., Owen, L.A., Yi, C., and Finkel, R.C. (2009). Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet.. Geol. Soc. Am. Bull. 121, 348365.CrossRefGoogle Scholar
Severinghaus, J.P., Beaudette, R., Heandly, M.A., Taylor, K., and Brook, E.J. (2009). Oxygen-18 of O2 records the impact of abrupt change on terrestrial biosphere.. Science 324, 14311434.Google Scholar
Shen, C.C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., and Edmonds, H.N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry.. Chem. Geol. 185, 165178.Google Scholar
Shen, J., Liu, X., Wang, S., and Ryo, M. (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years.. Quat. Int. 136, 131140.Google Scholar
Sinha, A., Cannariato, K.G., Stott, L.D., Li, H.C., You, C.F., Cheng, H., Edwards, R.L., and Singh, I.B. (2005). Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød.. Geology 33, 813816.Google Scholar
Steinhilber, F., Beer, J., and Frohlich, C. (2009). Total solar irradiance during the Holocene.. Geophysical Research Letters 36, 10.1029/2009GL040142.Google Scholar
Stuiver, M., and Grootes, P.M. (2000). GISP2 oxygen isotope ratios.. Quat. Res. 53, 277284.CrossRefGoogle Scholar
Styron, R.H., Taylor, M.H., Sundell, K.E., Stockli, D.F., Oalmann, J.A.G., McAllister, A.T., Liu, D., and Ding, L. (2013). Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: evolution of an active detachment system from structural mapping and (U–Th)/He thermochronology.. Tectonics 32, 10.1002/tect.20053.Google Scholar
Taft, L., Wiechert, U., Riedel, F., Weynell, M., and Zhang, H. (2012). Sub-seasonal oxygen and carbon isotope variations in shells of modern Radix sp. (Gastropoda) from the Tibetan Plateau: potential of a new archive for palaeoclimatic studies.. Quat. Sci. Rev. 34, 4456.Google Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.-A., Cole-Dai, J., and Bolzan, J.F. (1997). Tropical climate instability: the last glacial cycle from a Qinghai–Tibetan ice core.. Science 276, 18211825.Google Scholar
Tian, L., Yao, T., MacClune, K., White, J.W.C., Schilla, A., Vaughn, B., Vachon, R., and Ichiyanagi, K. (2007). Stable isotopic variations in west China: a consideration of moisture sources.. J. Geophys. Res. 112, 10.1029/2006JD007718D10112.Google Scholar
Van Campo, E., and Gasse, F. (1993). Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (western Tibet) since 13,000 yr B.P.. Quat. Res. 39, 300313.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., and Li, X. (2005). The Holocene Asian Monsoon: links to solar changes and North Atlantic climate.. Science 308, 854857.Google Scholar
Wischnewski, J., Mischke, S., Wang, Y., and Herzschuh, U. (2011). Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial–a multi-proxy, dual-site approach comparing terrestrial and aquatic signals.. Quat. Sci. Rev. 30, 8297.Google Scholar
Wu, Y., Lucke, A., Jin, Z., Wang, S., Schleser, G.H., Battarbee, R.W., and Xia, W. (2006). Holocene climate development on the central Tibetan Plateau: a sedimentary record from Cuoe Lake.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 234, 328340.Google Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F., and Arya, N. (2010). Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records.. Quat. Sci. Rev. 29, 11381155.Google Scholar
Xu, J., Haginoya, S., Masuda, K., and Suzuki, K. (2005). Heat and water balance estimates over the Tibetan Plateau in 1997–1998.. J. Meteorol. Soc. Jpn. 83, 577593.Google Scholar
Yi, C., Chen, H., Yang, J., Liu, B., Fu, P., Liu, K., and Li, S. (2008). Review of Holocene glacial chronologies based on radiocarbon dating in Tibet and its surrounding mountains.. J. Quat. Sci. 23, 533543.CrossRefGoogle Scholar
Zhang, C., and Mischke, S. (2009). A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau.. Quat. Sci. Rev. 28, 19701983.Google Scholar
Zhu, X., Bothe, O., and Fraedrich, K. (2011). Summer atmospheric bridging between Europe and East Asia: influences on drought and wetness on the Tibetan Plateau.. Quat. Int. 236, 151157.Google Scholar
Zimmerman, S.R.H., Steponaitis, E., Hemming, S.R., and Zermeño, P. (2012). Potential for accurate and precise radiocarbon ages in deglacial-age lacustrine carbonates.. Quat. Geochronol. 13, 8191.Google Scholar