Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:06:20.914Z Has data issue: false hasContentIssue false

Hydrological changes in the European midlatitudes associated with freshwater outbursts from Lake Agassiz during the Younger Dryas event and the early Holocene

Published online by Cambridge University Press:  20 January 2017

Abstract

Recent studies of lake-level fluctuations during the last deglaciation in eastern France (Jura Mountains and Pre-Alps) and on the Swiss Plateau show distinct phases of higher water level developing at the beginning and during the latter part of Greenland Stade 1 (i.e. Younger Dryas event) and punctuating the early Holocene period at 11,250–11,050, 10,300–10,000, 9550–9150, 8300–8050, and 7550–7250 cal yr B.P. The phases at 11,250–11,050 and 8300–8050 cal yr B.P. appear to be related to the cool Preboreal Oscillation and the 8200 yr event assumed to be associated with deglaciation events. A comparison of this mid-European lake-level record with the outbursts from proglacial Lake Agassiz in North America suggests that, between 13,000 and 8000 cal yr B.P. phases of positive water balance were the response in west-central Europe to climate cooling episodes, which were induced by perturbation of the thermohaline circulation due to sudden freshwater releases to oceans. This probably was in response to a southward migration of the Atlantic Westerly Jet and its associated cyclonic track. Moreover, it is hypothesized that, during the early Holocene, varying solar activity could have been a crucial factor by amplifying or reducing the possible effects of Lake Agassiz outbursts on the climate.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., (1997). Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology. 25, 483486.Google Scholar
Ammann, B., (1975). Vegetationskundliche und pollenanalytische Untersuchungen auf dem Heidenweg im Bielersee. Beitr. Geobot. Landesaufn. der Schweiz. 56, 76 pp.Google Scholar
Ammann, B., Gaillard, M.-J., Lotter, A.F., (1996). Switzerland. Berglund, B., Birks, H.J.B., Rallska-Jasiewiczowa, M., Wright, H.E., Palaeoecological events during the last 15,000 years. Wiley and Sons, New York., 647666.Google Scholar
Andersen, B.G., Mangerud, J., Sorensen, R., Reite, A., Sveian, H., Thoresen, M., Bergström, B., (1995). Younger Dryas ice-marginal deposits in Norway. Quaternary International. 28, 147169.Google Scholar
Andrews, J.T., (1994). Wisconsinan Late-glacial environmental change on the southeast Baffin shelf, southeast Baffin island and northern Labrador. Journal of Quaternary Science. 9, 179183.Google Scholar
Antoine, P., (1997). Modifications des systèmes fluviatiles à la transition Pléniglaciaire-Tardiglaciaire et à l'Holocène: l'exemple du bassin de la Somme (Nord de la France). Géographie physique et Quaternaire. 51, 93106.Google Scholar
Ariztegui, D., Asioli, A., Lowe, J., Trincardi, F., Vigliotti, L., Tamburini, F., Chondrogianni, C., Accorsi, C.A., Bandini Mazzanti, M., Mercuri, A.M., Van der Kaars, S., McKenzie, J.A., Oldfield, F., (2000). Palaeoclimate and the formation of sapropel 1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology. 158, 215240.Google Scholar
Baldini, J.U.L., McDermott, F., Fairchild, I.J., (2002). Structure of the 8200 yr cold event revealed by a speleothem trace element record. Science. 296, 22032206.Google Scholar
Bégeot, C., (2000). Histoire de la végétation et du climat au cours du Tardiglaciaire et du début de l'Holocène sur le Massif jurassien central à partir de l'analyse pollinique et des macrorestes végétaux. University of Franche Comté, Besançon. [Ph.D. dissertation].Google Scholar
Berger, J.F., Delhon, C., Bonté, S., Thiébault, S., Peyric, D., Beeching, A., Vital, J., (2002). Paléodynamique fluviale, climat, action humaine et évolution des paysages du bassin versant de la Citelle (moyenne vallée du Rhône, Drôme) à partir de l'étude de la séquence alluviale d'Espeluche-Lalo. Bravard, J.P., Magny, M., Les fleuves ont une histoire. Paléoenvironnement des rivières et des lacs français depuis 15,000 ans. Editions Errance, Paris., 223237.Google Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T.L., Wohlfarth, B., Hammer, C.U., Spurk, M., (1996). Synchronized terrestrial–atmospheric deglacial records around the North-Atlantic. Science. 274, 11551160.Google Scholar
Björck, S., Muscheler, R., Kromer, B., Andresen, C.S., Heinemeier, J., Johnsen, S., Conley, D., Koç, N., Spurk, M., Veski, S., (2001). High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology. 29, 11071110.2.0.CO;2>CrossRefGoogle Scholar
Björck, S., Rundgren, M., Ingolfsson, O., Funder, S., (1997). The Preboreal oscillation around the Nordic seas: terrestrial and lacustrine responses. Journal of Quaternary Science. 12, 455465.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.L., Wohlfarth, B., INTIMATE Members(1998). An event stratigraphy for the last termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science. 13, 283292.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science. 294, 21302136.Google Scholar
Bortenschlager, S., (1977). Ursachen and Ausmass postglazialer Waldgrenzschwankungen in den Ostalpen. Frenzel, B., Dendrochronologie und Postglazial Klimaschwankungen in Europa. Steiner Verlag, Wiesbaden., 260266.Google Scholar
Brathauer, U., Brauer, A., Negendank, J.F.W., Zolitschka, B., (2000). Rasche Klimaänderungen am Begin der heutigen Warmzeit. Zweijahresbericht GeoforschungsZentrum Postdam. 1998/1999, 2933.Google Scholar
Brauer, A., Endres, C., Günter, C., Litt, T., Stebich, M., Negendank, J.F.W., (1999). High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews. 18, 321329.Google Scholar
Brooks, S., Birks, H.J.B., (2000a). Chironomid-inferred Late-Glacial and early Holocene mean July air temperatures for Kråkenes Lake, western Norway. Journal of Paleolimnology. 23, 7789.Google Scholar
Brooks, S., Birks, H.J.B., (2000b). Chironomid-inferred Late-Glacial air temperatures at Whitrig Bog, southeast Scotland. Journal of Quaternary Science. 15, 759764.Google Scholar
Carrion, J.S., (2002). Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews. 21, 20472066.CrossRefGoogle Scholar
Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M., Teller, J.T., (2001). Freshwater forcing of abrupt climate change during the last glaciation. Science. 293, 283287.Google Scholar
Clark, P.U., Pisias, N.G., Stocker, T.F., Weaver, A.J., (2002). The role of the thermohaline circulation in abrupt climate change. Nature. 414, 863869.Google Scholar
Clerc, J., Magny, M., Mouthon, J., (1989). Histoire d'un milieu lacustre du Bas-Dauphiné: le Grand-Lemps. Etude palynologique des remplissages tardiglaciaires et holocènes et mise en évidence de fluctuations lacustres à l'aide d'analyses sédementologiques et malacologiques. Revue de Paléobioligie. 8, 119.Google Scholar
de Beaulieu, J.-L., Richard, H., Ruffaldi, P., Clerc, J., (1994). History of vegetation, climate and human action in the French Alps and the Jura over the last 15,000 years. Dissertationes Botanicae. 234, 253276.Google Scholar
Denton, G.H., Karlén, W., (1973). Holocene climatic variations: their pattern and possible cause. Quaternary Research. 3, 155205.CrossRefGoogle Scholar
Finkel, R.C., Nishiizumi, K., (1997). Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. Journal of Geophysical Research. 102, 2669926706.Google Scholar
Gasse, F., (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Sciences Reviews. 19, 189211.CrossRefGoogle Scholar
Goosse, H., Renssen, H., Selten, F.M., Haarsma, R.J., Opsteegh, J.D., (2002). Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophysical Research Letters. 29, 7/1, 7/4.CrossRefGoogle Scholar
Goslar, T., Arnold, M., Tisnerat-Laborde, N., Czernik, J., Wieckowski, K., (2000). Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature. 403, 877880.Google Scholar
Goslar, T., Wohlfarth, B., Björck, S., Possnert, G., Björck, J., (1999). Variations of atmospheric 14C concentrations over the Allerød-Younger Dryas transition. Climate Dynamics. 15, 2942.Google Scholar
Grøsfjeld, K., Larsen, E., Sejrup, H.P., de Vernal, A., Flatebø, M., Vestbø, M., Haflidason, H., Aarseth, I., (1999). Dinoflagellate cysts reflecting surface-water conditions in Voldafjorden, western Norway during the last 11,300 years. Boreas. 28, 403415.Google Scholar
Gulliksen, S., Possnert, G., Mangerud, J., Birks, H., (1994). AMS 14 dating of the Kräkenes Late Weichselian sediments. Abstract 15th International Radiocarbon Conference, Glasgow, Scotland, 15-19 August 1994.Google Scholar
Haas, J.N., Richoz, I., Tinner, W., Wick, L., (1998). Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at the timberline in the Alps. The Holocene. 8, 301304.Google Scholar
Hald, M., Hagen, S., (1998). Early Preboreal cooling in the Nordic seas region triggered by meltwater. Geology. 26, 615618.2.3.CO;2>CrossRefGoogle Scholar
Hammarlund, D., Edwards, T.W., Björck, S., Buchardt, B., Wohlfarth, B., (1999). Climate and environment during the Younger Dryas (GS-1) as reflected by composite stable isotope records of lacustrine carbonates at Torreberga, southern Sweden. Journal of Quaternary Science. 14, 1728.3.0.CO;2-E>CrossRefGoogle Scholar
Hormes, A., Müller, B.U., Schlüchter, C., (2001). The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 11, 255265.CrossRefGoogle Scholar
Hoyt, D.V., Schatten, , (1997). The Role of the Sun in Climate Change. Oxford Univ. Press, Oxford.Google Scholar
Hughen, K.A., Southon, J.R., Lehman, S.J., Overpeck, J.T., (2000). Synchronous radiocarbon and climate shifts during the last deglaciation. Science. 290, 19511954.CrossRefGoogle ScholarPubMed
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., Steffensen, J.P., (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature. 359, 311313.Google Scholar
Kovanen, D.J., Easterbrook, D.J., (2002). Timing and extent of Allerod and Younger Dryas age (ca 12,500–10,000 14C yr B.P.) oscillations of the Cordilleran Ice Sheet in the Fraser Lowland, western North America. Quaternary Research. 57, 208224.CrossRefGoogle Scholar
Kromer, B., Spurk, M., (1998). Revision and tentative extension of the tree-ring based 14C calibration, 9200–11855 cal BP. Radiocarbon. 40, 11171125.Google Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., Hamouti, N.E.P., van der Kaars, S., Perkins, W.T., Pearce, N.J., Roberts, C.N., (1995). Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature. 373, 134137.Google Scholar
Lotter, A.F., Eicher, U., Siegenthaler, U., Birks, H.J.B., (1992). Late-glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science. 7, 187204.Google Scholar
Lowe, J., (1994). Climate changes in areas adjacent to the North Atlantic during the last glacial–interglacial transition. Journal of Quaternary Science. 9, 93198.Google Scholar
Magny, M., (1992). Holocene lake-level fluctuations in Jura and the northern subalpine ranges, France: regional pattern and climatic implications. Boreas. 21, 319334.Google Scholar
Magny, M., (1993). Holocene fluctuations of lake levels in the French Jura and Subalpine ranges and their implications for past general circulation pattern. The Holocene. 3, 306313.Google Scholar
Magny, M., (1995). Successive oceanic and solar forcing indicated by Younger Dryas and Early Holocene climatic oscillations in the Jura. Quaternary Research. 43, 279285.Google Scholar
Magny, M., (1998). Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. Harrison, S.P., Frenzel, B., Huckried, U., Weiss, M., Palaeohydrology as reflected in lake-level changes as climatic evidence for Holocene times. Paläoklimaforschung. 25, 6785.Google Scholar
Magny, M., (2001). Palaeohydrological changes as reflected by lake-level fluctuations in the Swiss Plateau, the Jura mountains and the northern French Pre-Alps during the Last Glacial–Holocene transition: a regional synthesis. Global and Planetary Change. 30, 85101.CrossRefGoogle Scholar
Magny, M., (2003). Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International. 113, 6579.Google Scholar
Magny, M., Bégeot, C., Ruffaldi, P., Bossuet, G., Marguet, A., Billaud, Y., Millet, L., Vannière, B., Mouthon, J., (2002). Variations paléohydrologiques de 14,700 à 11,000 cal BP dans le Jura et les Préalpes française. Bravard, J.P., Magny, M., Les Fleuves Ont une Histoire. Paléoenvironnement des Rivières et des Lacs Français depuis 15,000 Ans. Errance, Paris., 135142.Google Scholar
Magny, M., Guiot, J., Schoellammer, P., (2001a). Quantitative reconstruction of Younger Dryas to mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quaternary Research. 56, 170180.Google Scholar
Magny, M., Marguet, A., Chassepot, G., Richard, H., Billaud, Y., (2001b). Early and late Holocene water-level fluctuations of Lake Annecy, France: sediment and pollen evidence and climatic implications. Journal of Paleolimnology. 25, 215227.CrossRefGoogle Scholar
Magny, M., Richoz, I., (2000). Late glacial lake-level changes at Montilier-Strandweg, Lake Morat, Switzerland and their climatic significance. Quaternaire. 11, 129144.Google Scholar
Magny, M., Ruffaldi, P., (1995). Younger Dryas and early Holocene lake-level fluctuations in the Jura mountains, France. Boreas. 24, 155172.Google Scholar
Magny, M., Bégeot, C., Guiot, J., Marguet, A., Billaud, Y., (2003a). Reconstruction and palaeoclimatic interpretation of mid-Holocene vegetation and lake-level changes at Saint-Jorioz, Lake Annecy, French Pre-Alps. The Holocene. 13, 265275.CrossRefGoogle Scholar
Magny, M., Thew, N., Hadorn, P., (2003b). Late-glacial and early Holocene changes in vegetation and lake-level at Hauterive/Rougest-Terres, Lake Neuchâtel (Switzerland). Journal of Quaternary Science. 18, 3140.Google Scholar
Magri, D., Parra, I., (2002). Late Quaternary western Mediterranean pollen records and African winds. Earth and Planetary Science Letters. 200, 401408.Google Scholar
Manabe, S., Stouffer, R.J., (1997). Coupled ocean–atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography. 12, 321336.Google Scholar
Marchal, O., Stocker, T.F., Muscheler, R., (2001). Atmospheric radiocarbon during the Younger Dryas: production, ventilation or both?. Earth and Planetary Science Letters. 185, 383395.Google Scholar
Miramont, C., Belingard, C., Edouard, J.-L., Jorda, M., (1998). Reconstitution des paléoenvironnements holocènes alpins et préalpins. Evaluation des paramètres climatiques et anthropiques responsables de l'évolution. Univ. Prähist. Archäol. 55, 189196.Google Scholar
Muscheler, R., Beer, J., Wagner, G., Finkel, R.C., (2000). Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature. 408, 567570.Google Scholar
Nesje, A., Dahl, S.O., (2001). The Greenland 8200 cal yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science. 16, 155166.CrossRefGoogle Scholar
Nesje, A., Lie, O., Dahl, S.O., (2000). Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records?. Journal of Quaternary Science. 15, 587601.Google Scholar
Noe-Nygaard, N., Heiberg, E.O., (2001). Lake-level changes in the Late Weichselian Lake Tøvelde, Møn, Denmark: induced by changes in climate and base level. Palaeogeography, Palaeoclimatology, Palaeoecology. 174, 351382.Google Scholar
Patzelt, G., (1977). Der zeitliche Ablauf und das Ausmass postglazialer Klimaschwankungen in den Alpen. Frenzel, B., Dendrochronologie und Postglaziale Klimaschwankungen in Europa. Steiner Verlag, Wiesbaden., 248259.Google Scholar
Rahmstorf, S., (1995a). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature. 378, 145149.Google Scholar
Rahmstorf, S., (1995b). Multiple convection patterns and thermohaline flow in an idealized OGCM. Journal of Climate. 8, 30283029.Google Scholar
Ramrath, A., Sadori, L., Negendank, J.F.W., (2000). Sediments from Lago di Mezzano, central Italy: a record of Late glacial/Holocene climatic variations and anthropogenic impact. The Holocene. 10, 8795.Google Scholar
Reille, M., Gamissans, J., de Beaulieu, J.L., Andrieu, V., (1997). The Late-Glacial at Lac de Creno (Corsica, France): a key site in the western Mediterranean basin. New Phytologist. 135, 547559.Google Scholar
Renssen, H., Goosse, H., Fichefet, T., Campin, J.M., (2001). The 8,2 kyr event simulated by a global atmosphere–sea–ice–ocean model. Geophysical Research Letters. 28, 15671570.Google Scholar
Renssen, H., van Geel, B., van der Plicht, J., Magny, M., (2000). Reduced solar activity as a trigger for the start of the Younger Dryas?. Quaternary International. 68–71, 373383.Google Scholar
Richard, H., (1997). Analyse pollinique d'un sondage de 7,50m. Pétrequin, P., Les sites littoraux néolithiques de Clairvaux-les-Lacs et de Chalain (Jura). III. Chalain station 3 3200-2900 av. J.C. Maison des Sciences de l'Homme, Paris., 101112.Google Scholar
Rochon, A., de Vernal, A., Sejrup, H.P., Haflidason, H., (1998). Palynological evidence of climatic and oceanographic changes in the North Sea during the last deglaciation. Quaternary Research. 49, 197207.Google Scholar
Rousseau, D.D., Preece, R., Limondin-Lozouet, N., (1998). British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology. 26, 651654.Google Scholar
Saarnisto, M., Saarinen, T., (2001). Deglaciation chronology of the Scandinavian Ice Sheet from the Lake Onega basin to the Salpausselkä end moraines. Global and Planetary Change. 31, 387405.CrossRefGoogle Scholar
Schwander, J., Eicher, U., Ammann, B., (2000). Stable isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations, and their correlation to the GRIP ice core. Palaeogeography, Palaeoecology, Palaeoclimatology. 159, 203214.Google Scholar
Stuiver, M., Braziunas, T.F., (1993). Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene. 3, 289305.Google Scholar
Stuiver, M., Grootes, P.M., Braziunas, T.F., (1995). The GISP2 ∂18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research. 44, 341354.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon. 40, 10411083.Google Scholar
Teller, J.T., Leverington, D.W., Mann, J.D., (2002). Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews. 21, 879887.Google Scholar
Tinner, W., Lotter, A.F., (2001). Central European vegetation response to abrupt climate change at 8,2 ka. Geology. 29, 551554.Google Scholar
van Geel, B., Buurman, J., Waterbolk, H.T., (1996). Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science. 11, 451460.Google Scholar
Walker, M.J.C., (1995). Climatic changes in Europe during the last glacial/interglacial transition. Quaternary International. 28, 6376.Google Scholar
Zoller, H., (1977). Alter und Ausmass postglazialer Klimaschwankungen in den Schweizer Alpen. Frenzel, B., Dendrochronologie und Klimaschwankungen in Europa, Wiesbaden, Steiner. 271281.Google Scholar