Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T09:57:41.116Z Has data issue: false hasContentIssue false

Holocene Vegetation Dynamics of Anticosti Island, Québec, and Consequences of Remoteness on Ecological Succession

Published online by Cambridge University Press:  20 January 2017

Martin Lavoie*
Affiliation:
Centre d'études nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
Louise Filion
Affiliation:
Centre d'études nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
*
1Corresponding author. E-mail: [email protected], [email protected]

Abstract

The postglacial vegetation history of Anticosti Island in the Gulf of St. Lawrence, Québec, was reconstructed from pollen analysis of three sites, providing the first paleoecological data for the island. The earliest plant communities (8550–7770 14C yr B.P.; 9500–8500 cal yr B.P.) were characterized by a high representation of green alder (Alnus crispa), indicating an open environment with sparse spruce (Picea). Between 7770 and 3700 14C yr B.P. (8500–4000 cal yr B.P.), the island was colonized by mixed deciduous and coniferous forests dominated by paper birch (Betula papyrifera) and spruce. A major increase in the abundance of balsam fir (Abies balsamea) occurred ca. 3700 14C yr B.P. (4000 cal yr B.P.), indicating development of the closed fir–spruce forests as they exist today. The island's remoteness from continental seed plant sources influenced plant colonization, afforestation, and ecological succession. The Gulf of St. Lawrence slowed plant migration, and tree species had to spread from the Gaspé Peninsula. Repeated drops in fir pollen percentages during the last 4,000 years may reflect the activity of defoliating insects.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, T.D., Moeller, R.E., and Davis, M.B. (1986). Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67, 11011105.CrossRefGoogle Scholar
Anderson, R.S., Davis, R.B., Miller, N.G., and Stuckenrath, R. (1986). History of-late and post-glacial vegetation and disturbance around Upper South Branch Pond, northern Maine. Canadian Journal of Botany 64, 19771986.Google Scholar
Anderson, T.W., and Lewis, C.F.M. (1992). Climatic influences of deglacial drainage in southern Canada at 10 to 8 ka suggested by pollen evidence. Géographie physique et Quaternaire 46, 255272.Google Scholar
Anderson, T.W., and Macpherson, J.B. (1994). Wisconsinan late-glacial environmental change in Newfoundland: A regional review. Journal of Quaternary Science 9, 171178.Google Scholar
Benninghoff, W.S. (1962). Calculation of pollen and spores density in sediments by addition of exotic pollen in known quantities. Pollen et Spores 4, 332333.Google Scholar
Bhiry, N., and Filion, L. (1996). Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity. Quaternary Research 45, 312320.CrossRefGoogle Scholar
Chouinard, A., and Filion, L. (2001). Detrimental effects of white-tailed deer browsing on balsam fir growth and recruitment in a tsecond-growth stand on Anticosti Island, Quebec. Écoscience 8, Google Scholar
Côté, D., Dubois, J.M.M., and Nadeau, L. (1990). Les dunes du Québec méridional: Contribution à l'étude des vents dominants durant l'Holocéne. Géographe canadien 34, 4962.Google Scholar
Cwynar, L.C., Levesque, A.J., Mayle, F.E., and Walker, I. (1994). Wisconsinan late-glacial environmental change in New Brunswick: A regional synthesis. Journal of Quaternary Science 9, 161164.Google Scholar
Davis, A.M. (1984). Ombrotrophic peatlands in Newfoundland, Canada: Their origins, development and trans-atlantic affinities. Chemical Geology 44, 287309.Google Scholar
de Vernal, A., Guiot, J., and Turon, J.L. (1993). Late and postglacial paleo- environments of the Gulf of St. Lawrence: Marine and terrestrial evidence. Géographie physique et Quaternaire 47, 167180.CrossRefGoogle Scholar
Dubois, J.M.M., and Dionne, J.C. (1982). The Québec North Shore Moraine System: A major feature of Late Wisconsin deglaciation. Burns, H.W., Lasalle, P., and Thompson, W.B. (1985). Late Pleistocene of Northeastern New England and Adjacent Québec. Geological Society of America, 125133.Google Scholar
Dyke, A.S., and Prest, V.K. (1987). Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géographie physique et Quaternaire 41, Google Scholar
Engstrom, D.R., and Hansen, B.C.S. (1985). Postglacial vegetational changes and soil development in southeastern Labrador as inferred from pollen and chemical stratigraphy. Canadian Journal of Botany 63, 543561.CrossRefGoogle Scholar
Normales climatiques au Canada, 1951–1980. Service de l'Environnement atmosphérique, Ottawa.Google Scholar
Faegri, K., Iversen, J. Faegri, K., Kaland, P.E., and Krzywinski, K. (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Filion, L., Payette, S., Delwaide, A., Bhiry, N. Canadian Journal of Forest Research 28, 18321842.Google Scholar
Fuller, J.L. (1998). Ecological impact of the mid-Holocene hemlock decline in southern Ontario, Canada. Ecology 79, 23372351.Google Scholar
Gajewski, K. (1991). Représentation pollinique actuelle à la limite des arbres au Nouveau-Québec. Canadian Journal of Earth Sciences 28, 643648.Google Scholar
Grant, D.R. (1991). Le Quaternaire de la région des Appalaches atlantiques du Canada. Fulton, R.J. (1989). Le Quaternaire du Canada et du Groenland. Commission géologique du Canada, Géologie du Canada, Ottawa. 421474.Google Scholar
Grimm, E.C. (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Grimm, E. C. TILIA and TILIA-GRAPH. Illinois State Museum, Springfield, IL.Google Scholar
Ives, J.W. (1977). Pollen separation of three North American birches. Arctic and Alpine Research 9, 7380.Google Scholar
Jetté, H., and Richard, P.J.H. (1992). Contribution à l'histoire postglaciaire de la végétation en Gaspésie méridionale, Québec. Géographie physique et Quaternaire 46, 273284.Google Scholar
Josenhans, H., and Lehman, S. (1999). Late glacial stratigraphy and history of the Gulf of St. Lawrence, Canada. Canadian Journal of Earth Sciences 36, 13271345.Google Scholar
Jowsey, P.C. (1966). An improved peat sampler. New Phytologist 65, 245248.Google Scholar
Kidder, A., and Tuck, J.A. (1972). A preliminary survey of Anticosti Island (Québec). Man in the Northeast 4, 8892.Google Scholar
King, G.A. (1985). A standard method for evaluating radiocarbon dates of local deglaciation: Application to the deglaciation history of southern Labrador and adjacent Québec. Géographie physique et Quaternaire 39, 163182.Google Scholar
King, G.A. (1993). Vegetation and pollen relationships in eastern Canada. Canadian Journal of Botany 71, 193210.Google Scholar
Labelle, C., and Richard, P.J.H. (1984). Histoire postglaciaire de la végétation dans la région de mont-Saint-Pierre, Gaspésie. Géographie physique et Quaternaire 38, 257274.CrossRefGoogle Scholar
Lamb, H.F. (1980). Late Quaternary vegeration history of southeastern Labrador. Arctic and Alpine Research 12, 117135.Google Scholar
Levesque, A.J., Cwynar, L.C., and Walker, I.R. (1994). A multi-proxy investigation of late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quaternary Research 42, 316327.CrossRefGoogle Scholar
Lévesque, P.E.M., Dinel, H., and Larouche, A. (1988). Guide illustré des macrofossiles végétaux des tourbières du Canada. Agriculture Canada, Ottawa.Google Scholar
Macpherson, J.B. (1995). A 6 ka BP reconstruction for the island of Newfoundland from a synthesis of Holocene lake-sediment pollen records. Géographie physique et Quaternaire 49, 163182.CrossRefGoogle Scholar
Marcoux, N., and Richard, P.J.H. (1995). Végétation et fluctuations climatiques postglaciaires sur la côte septentrionale gaspésienne, Québec. Canadian Journal of Earth Sciences 32, 7996.Google Scholar
Martel, M. (1999). Analyse dendroécologique des effets de la défoliation par l'arpenteuse de la pruche (Lambdina fiscelleria (Guen.)) sur les populations forestières de l'ı̂le d'Anticosti, Québec. Université Laval, Québec.Google Scholar
Martineau, R. (1985). Insectes nuisibles des forêts de l'est du Canada. Broquet, La Prairie.Google Scholar
Mayle, F.E., and Cwynar, L.C. (1995). Impact of the Younger Dryas cooling event upon lowland vegetation of Maritime Canada. Ecological Monographs 65, 129154.Google Scholar
Mayle, F.E., Levesque, A.J., and Cwynar, L.C. (1993). Accelerator-mass-spectrometer ages for the Younger Dryas event in Atlantic Canada. Quaternary Research 39, 355360.CrossRefGoogle Scholar
McAndrews, J.H., Berti, A.A., and Norris, G. (1973). Key to the Quaternary Pollen and Spores of the Great Lakes Region. Life Science Miscellaneous Publication. Royal Ontario Museum, Toronto.Google Scholar
Montgomery, F.H. (1977). Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. University of Toronto Press, Toronto.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. (1991). Pollen Analysis. Blackwell Scientific, Oxford.Google Scholar
Mott, R.J. Naturaliste canadien 103, 457467.Google Scholar
Painchaud, A., Dubois, J.M.M., and Gwyn, Q.H.J. (1984). Déglaciation et émersion des terres de l'ouest de l'Île d'Anticosti, Golfe du Saint-Laurent, Québec. Géographie physique et Quaternaire 38, 93111.CrossRefGoogle Scholar
Parent, J., and Richard, P.J.H. (1990). Morphologie pollinique des Cupressaceae de l'est du Canada et du nord-est des États-Unis appliquée à l'étude des sédiments quaternaires. Canadian Journal of Botany 68, 7989.Google Scholar
Payette, S., Bhiry, N., Delwaide, A., and Simard, M. (2000). Origin of the lichen woodland at its southern range limit in eastern Canada: The catastrophic impact of insect defoliators and fire on the spruce-moss forest. Canadian Journal of Forest Research 30, 288305.CrossRefGoogle Scholar
Peglar, S.M. (1993). The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: A year-by-year pollen stratigraphy from annual laminations. The Holocene 3, 113.Google Scholar
Potvin, F. L'habitat du cerf à Anticosti de 1978 à 1988: suivi quinquennal. Rapport, Direction de la gestion des espèces et des habitats, Ministère du Loisir, de la Chasse et de la Pêche, Québec.Google Scholar
Richard, P.J.H. (1970). Atlas pollinique des arbres et de quelques arbustes indigènes du Québec. Naturaliste canadien 97, 134.Google Scholar
Richard, P.J.H., and Labelle, C. (1989). Histoire postglaciaire de la végétation au lac du Diable, mont Albert, Gaspésie, Québec. Géographie physique et Quaternaire 43, 337354.Google Scholar
Richard, P.J.H., Veillette, J., Larouche, A.C., Hétu, B., Gray, J.T., and Gangloff, P. (1997). Chronologie de la déglaciation en Gaspésie: Nouvelles données et implications. Géographie physique et Quaternaire 51, 163184.CrossRefGoogle Scholar
Ritchie, J.C. (1984). Past and Present Vegetation of the Far Northwest of Canada. University of Toronto Press, Toronto.Google Scholar
Rousseau, C. (1974). Géographie floristique du Québec/Labrador. Les Presses de l'Université Laval, Québec.Google Scholar
St-Pierre, L., Gwyn, Q.H.J., and Dubois, J.M.M. (1987). Litho- stratigraphie et dynamique glaciaires au Wisconsinien, ı̂le d'Anticosti, Golfe du Saint-Laurent. Canadian Journal of Earth Sciences 24, 18471858.Google Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Teller, J.T. (1990). Volume and routing of late-glacial runoff from the southern Laurentide Ice Sheet. Quaternary Research 34, 1223.Google Scholar