Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T02:05:06.279Z Has data issue: false hasContentIssue false

Holocene Sea-Level Rise Recorded by a Radiocarbon-Dated Mussel in a Submerged Speleothem beneath the Mediterranean Sea

Published online by Cambridge University Press:  20 January 2017

Fabrizio Antonioli
Affiliation:
Department of Environment, ENEA Casaccia, Via Anguillarese 301, I-00060, Rome, Italy
Marco Oliverio
Affiliation:
Department of Animal and Human Biology, “La Sapienza” Rome University 1, Viale dell'Università 32, I-00185, Rome, Italy

Abstract

Fossil shells of the boring mussel Lithophaga lithophaga provide a means for dating changes in relative sea level. These bivalves, being among the first colonizers of bare calcareous substrates, can mark the earliest stages of marine submergence of caves. Here we report data concerning the deepest submerged speleothem presently sampled in a temperate area, at 48 m below present sea level off the west coast of Italy (Mediterranean Sea). A fossil mussel shell beneath encrusting layers from later marine colonists gave an AMS age of 9580 ± 35 14C yr B.P. (10,253 ± 72 cal yr B.P.).

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessio, M. Allegri, F. Antonioli, F. Belluomini, G. Ferranti, L. Improta, S. Manfra, L., and Proposito, A. (1992). Risultati preliminari relativi alla datazione di speleotemi sommersi nelle fasce costiere del Tirreno Centrale. Giornale di Geologia 54(2), 165193.Google Scholar
Alessio, M. Allegri, F. Antonioli, F. Belluomini, G. Improta, S. Manfra, L., and Preite, M. (1994). La curva di risalita del Mare Tirreno negli ultimi 40 ka tramite datazioni di speleotemi e dati archeologici. ‘‘International Meeting of Underwater Geology GEOSUB’94,” pp. 7475.Google Scholar
Aloisi, J. C. (1993). Holocene sea level data from the Mediterranean coast and shelf of France. In “Holocene Sea Level Change Workshop,” European Science Foundation, Rennes, France, 2–4 December 1993.Google Scholar
Bard, E. Harmelin, B., and Fairbanks, R. (1990). U–Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130.000 years. Nature 346 , 456458.Google Scholar
Fairbanks, R. (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342 , 637642.Google Scholar
Imamura, A. (1926). On the recurrence of destructive earthquakes. Proceedings of the Imperial Academy, Tokyo 2 , 264267.Google Scholar
Kleemann, K. H. (1973a). Lithophaga lithophaga (L.) (Bivalvia) in different limestone. Malacologia 14 , 345347.Google Scholar
Kleemann, K. H. (1973b). Der Gesteisabau durch Atzmuscheln an Kalkkusten. Oecologia 13 , 377395.Google Scholar
Lundberg, J., and Ford, D. C. (1994). Late Pleistocene sea level change in the Bahamas from mass spectrometric U-series dating of submerged speleothem. Quaternary Science Reviews 13 , 115.Google Scholar
Lyell, C. (1877). ‘‘Principles of Geology,” 12th ed. Appleton, New York.Google Scholar
Oliverio, M. (1992). Aspetti ecologici del popolamento bentonico di speleotemi sommersi. In “Seminario di Geologia Subacquea, Naples, Italy, 30 June 1992.” pp. 2425.Google Scholar
Pirazzoli, P. A. (1991). ‘‘World Atlas of Holocene Sea-Level changes,” Elsevier Oceanographic Series, Vol. 58. Elsevier, Amsterdam.Google Scholar
Richards, D. A. Smart, P. L., and Edwards, R. L. (1994). Sea levels for the last glacial period based on 238U–234U–230Th ages of submerged cave deposits from the Bahamas. Nature 367 , 357360.Google Scholar
Stuiver, M., and Reimer, P. J. (1993). Radiocarbon calibration program. Radiocarbon 35 , 215230.Google Scholar