Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T10:45:01.821Z Has data issue: false hasContentIssue false

Holocene History of the Chocó Rain Forest from Laguna Piusbi, Southern Pacific Lowlands of Colombia

Published online by Cambridge University Press:  20 January 2017

Hermann Behling
Affiliation:
Hugo de Vries Laboratory, Department of Palynology and Paleo/Actuo-ecology, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
Henry Hooghiemstra
Affiliation:
Hugo de Vries Laboratory, Department of Palynology and Paleo/Actuo-ecology, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
Alvaro José Negret
Affiliation:
Museo De Historia Natural, Universidad del Cauca, Carrera 2a No. 1A-25, Popayán, Colombia

Abstract

A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS14C dates that range from ca. 7670 to 22014C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 610014C yr B.P. (500–265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 440014C yr B.P. From the interval of about 600014C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae, Cecropia,Melastomataceae/Combretaceae, Acalypha, Alchornea,Fabaceae, Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,and Wettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 346014C yr B.P. Evidence of agricultural activity, shown by cultivation of Zea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M. L (1979). A Palynological Study of Holocene Sediments in the Amazon Basin. Ph.D. thesis, University of Amsterdam.Google Scholar
Behling, H., Lauer, W., and Placke, A. (1996). Global distribution of species diversity in vascular plants: Towards a world map of phytodiversity.. Erdkunde 50, 317327.Google Scholar
Behling, H., (1993). Untersuchungen zur spätpleistozänen und holozänen Vegetations- und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien).. Dissertationes Botanicae 206, J. Cramer, Berlin/Stuttgart.Google Scholar
Behling, H., and Hooghiemstra, H. (1998). Late Quaternary palaeoecology and palaeoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeography, Palaeoclimatology, Palaeoecology 139, 251267.CrossRefGoogle Scholar
Behling, H., Hooghiemstra, H Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. Journal of Paleolimnology.Google Scholar
Behling, H., Berrio, J. C., and Hooghiemstra, H Late Quaternary pollen records from the middle Caquetá river basin in central Colombian Amazon. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Behling, H., Negret, A.J., and Hooghiemstra, H. (1998). Late Quaternary vegetational and climatic change in the Popayán region, southern Colombian Andes. Journal of Quaternary Science 13, 4353.Google Scholar
Bernal, R.G., and Galeano, G. (1993). Las palmas del Anden pacifico. Colombia Pacifico FEN Colombia, Bogotá.p. 221–231Google Scholar
Bush, M.B., Piperno, D.R., and Colinvaux, P.A. (1989). A 6000 year history of Amazonian maize cultivation. Nature 340, 302303.Google Scholar
Bush, M.B., and Colinvaux, P.A. (1994). Tropical forest disturbance: Paleoecological records from Darien, Panama. Ecology 75, 176178.Google Scholar
Clapperton, C. (1993). Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam.Google Scholar
Colinvaux, P.A., Frost, M., Frost, L., Liu, K.-B., and Steinnitz-Kannan, M. (1988). Three pollen diagrams of forest disturbance in the western Amazon. Review of Paleobotany and Palynology 55, 7382.CrossRefGoogle Scholar
Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J., and Hamilton, A.C. (1997). Centres of Plant Diversity. Volume 3, The Americas. WWF and IUCN, Newbury.Google Scholar
Eslava, J.A. (1993). Climatologia.Leyva, P. Colombia Pacifico FEN Colombia, Bogotá.137147.Google Scholar
Faber-Langendoen, D., and Gentry, A.H. (1991). The structure and diversity of rain forests at Bajo Calima, Chocó Region, Western Colombia. Biotropica 23, 211.Google Scholar
Faegri, K., and Iversen, J. (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Forero, E (1982). Lafloray la vegetación del Chocó y sus relaciones fitogeográficas.Google Scholar
Forero, E., and Gentry, A. H (1989). Lista anotada de las plantas del departamento del Chocó. Colombia, Instituto de Ciencias Naturales, Museo de Historia Natural, Universidad Nacional de Colombia, Bogotá.;Google Scholar
Gentry, A.H. (1982). Phytogeographic patterns as evidence for a Chocó refuge.Prance, G.T. Biological Diversification in the Tropics Columbia Univ. Press, New York.113136.Google Scholar
Gentry, A.H. (1986). Species richness and floristic composition of Chocó region plant communities. Caldasia 15, 7191.Google Scholar
Gentry, A.H. (1986). Endemism in tropical vs. temperate plant communities.Soule, M. Conservation Biology Sinauer, Sunderland.153181.Google Scholar
Gentry, A.H. (1993). Riqueza de especies y composición floristica de las comunidades de plantas de la región del Chocó: Una actualización.Leyva, P. Colombia Pacifico FEN Colombia, Bogotá.201219.Google Scholar
Gradstein, S.R. (1992). The vanishing tropical rain forest as an environment for bryophytes and lichens.Bates, J.W., Farmer, A.M. Bryophytes and Lichens in a Changing Environment Clarendon Press, Oxford.232256.Google Scholar
Grimm, E.C. (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Herrera, L. F., and Urrego, L. E (1996). “Atlas de Polen de Plantas Útiles y Cultivadas de la Amazonia Colombiana” (Pollen Atlas of Useful and Cultivated Plants in the Colombian Amazon Region). XI, The Quaternary of Colombia, 23 Google Scholar
Hooghiemstra, H. (1984). Vegetational and climatic history of the high plain of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million years. Dissertationes Botanicae 79, Google Scholar
Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 267309.Google Scholar
Hoorn, C., Guerrero, J., Sarmiento, G.A., and Lorente, M.A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237240.2.3.CO;2>CrossRefGoogle Scholar
Kirkbridge, C. G (1986). Biological evaluation of the Chocó biogeographic region in Colombia.Google Scholar
Lamb, B. (1959). The coastal swamp forest of Nariño, Colombia. Caribbean Forester 20, 7889.Google Scholar
Lauer, W., Rafiqpoor, M.D., and Frankenberg, P. (1996). Die Klimate der Erde—Eine Klassifikation auf ökophysiologischer Grundlage der realen Vegetation. Erdkunde 50, 275300.Google Scholar
Lellinger, D.B. (1975). A phytogeographic analysis of Chocó pteridophytes. Fern Gazette 11, 105114.Google Scholar
Martinez, J.O. (1993). Geomorfologia.Leyva, P. Colombia Pacifico FEN Colombia, Bogotá.111119.Google Scholar
McNeely, J.A., Miller, K.R., Reid, W.V., Mittermeier, R.A., and Werner, T.B. (1990). Conserving the World's Biological Diversity. IUCN, WRI, CI, WWF-US, The World Bank, Gland.Google Scholar
Myers, N. (1988). Threatened biotas: ‘Hot spots’ in tropical forests. The Environmentalist 8, 187208.Google Scholar
Piperno, D.P. (1994). Phytolith and charcoal evidence for prehistoric slash-and-burn agriculture in the Darien rain forest of Panama. The Holocene 4, 321325.Google Scholar
Prance, G.T. (1982). Forest refuges evidence from woody angiosperms.Prance, G.T. Biological Diversification in the Tropics Columbia Univ. Press, New York.137156.Google Scholar
Rangel, J.O., and Lowy, P.D. (1993). Tipos de vegetación y rasgos fitogeográficos.Leyva, P. Colombia Pacifico FEN Colombia, Bogotá.183198.Google Scholar
Rangel, J.O., Aguilar, M., Sanchez, H., and Lowy, P. (1995). Region costa pacifica.Rangel, J.O. Colombia Diversidad Biotica I Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.121139.Google Scholar
Rangel, J.O., Lowy, P., and Aguilar, M. (1995). Selva pluvial central.Rangel, J.O. Colombia Diversidad Biotica I Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.140144.Google Scholar
Roubik, D.W., and Moreno, J.E. (1991). Pollen and spores of Barro Colorado Island. Missouri Botanical Garden 36, 1270.Google Scholar
Snow, J.W. (1976). Northern South America; Colombia; Pacific coast section.Schwerdtfeger, W. Climates of Central and South America Elsevier, Amsterdam.370376.Google Scholar
Urrego, L. E (1994/1997). ), Los Bosques Inundables del Medio Caquetá: Caracterización y Succesión. Estudios en la Amazonia Colombiana, XIV, Tropenbos-Colombia, Bogotá., 1994/1998Google Scholar
Van der Borg, K., Alderkiesten, A., Harnton, C.M., De Jong, A.F., and Van Zwol, N.A. (1987). Accelerator mass spectrometry with14 10 . Nuclear Instruments Methods B 29, 143145.CrossRefGoogle Scholar
Van der Hammen, T., Duivenvoorden, J.F., Lips, J.M., Urrego, L.E., and Espejo, N. (1992). Late Quaternary of the middle Caquetá River area (Colombian Amazonia). Journal of Quaternary Science 7, 4555.CrossRefGoogle Scholar
Van der Hammen, T., Urrego, L.E., Espejo, N., Duivenvoorden, J.F., and Lips, J.M. (1992). Late-glacial and Holocene sedimentation and fluctuations of river water level in the Caquetá area (Colombian Amazonia). Journal of Quaternary Science 7, 5767.Google Scholar
West, R. (1957). The Pacific Lowlands of Colombia.Google Scholar
Wijmstra, T.A., and Van der Hammen, T. (1966). Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen 38, 7190.Google Scholar
Zuluaga, R.S. (1987). Observaciones fitoecológicas en el Darién colombiano. Pérez-Arbelaezia 1, 85145.Google Scholar