Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T19:18:08.715Z Has data issue: false hasContentIssue false

Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies

Published online by Cambridge University Press:  20 January 2017

Lydie Dudová*
Affiliation:
Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, CZ-602 00 Brno, Czech Republic Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
Petra Hájková
Affiliation:
Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, CZ-602 00 Brno, Czech Republic Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
Věra Opravilová
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
Michal Hájek
Affiliation:
Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, CZ-602 00 Brno, Czech Republic Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
*
*Corresponding author at: Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, CZ-602 00 Brno, Czech Republic.E-mail address:[email protected] (L. Dudovà).

Abstract

We discovered the first peat section covering the entire Holocene in the Hrubý Jeseník Mountains, representing an island of unique alpine vegetation whose history may display transitional features between the Hercynian and Carpathian regions. We analysed pollen, plant macrofossils (more abundant in bottom layers), testate amoebae (more abundant in upper layers), peat stratigraphy and chemistry. We found that the landscape development indeed differed from other Hercynian mountains located westward. This is represented by Pinus cembra and Larix during the Pleistocene/Holocene transition, the early expansion of spruce around 10,450 cal yr BP, and survival of Larix during the climatic optimum. The early Holocene climatic fluctuations are traced in our profile by species compositions of both the mire and surrounding forests. The mire started to develop as a calcium-rich percolation fen with some species recently considered to be postglacial relicts (Meesia triquetra, Betula nana), shifted into ombrotrophy around 7450 cal yr BP by autogenic succession and changed into a pauperised, nutrient-enriched spruce woodland due to modern forestry activities. We therefore concluded that its recent vegetation is not a product of natural processes. From a methodological viewpoint we demonstrated how using multiple biotic proxies and extensive training sets in transfer functions may overcome taphonomic problems.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartoš, E. Kořenonožce radu Testacea. (1954). Slovenská akademie věd, Bratislava (in Slovak).Google Scholar
Berggren, G. Atlas of Seeds. Part 2. Cyperaceae. (1969). Swedish Natural Science Research Council, Stockholm.Google Scholar
Berglund, B.E. Handbook of Holocene Palaeoecology and Palaeohydrology. (1986). John Wiley & Sons, Chichester.Google Scholar
Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. (2004). Verlag Dr. Friedrich Pfeil, München (in German).Google Scholar
Birks, H.J.B., and Seppä, H. Late-Quaternary palaeoclimatic research in Fennoscandia — a historical review. Boreas 39, (2010). 655673.CrossRefGoogle Scholar
Břízová, E. Boží dar peat bog (Krušné hory Mts.). Excursion Guide of 6th Summer School of Quaternary Studies. (2010). 2732.Google Scholar
Cappers, R.T.J., Bekker, R.M., and Jans, J.E.A. Digitale zadenatlas van Nederland — Digital seed atlas of The Netherlands. (2012). Barkhuis publishing, Zuurstukken.Google Scholar
Chambers, F.M., Booth, R.K., De Vleeschouwer, F., Lamentowicz, M., Le Roux, G., Mauquoy, D., Nichols, J.E., and van Geel, B. Development and refinement of proxy-climate indicators from peats. Quaternary International 268, (2012). 2133.CrossRefGoogle Scholar
Charman, D.J., Hendon, D., and Woodland, W.A. The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Technical Guide No. 9. (2000). Quaternary Research Association, London.Google Scholar
Charman, D.J., Blundell, A. ACCROTELM_Members A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. Journal of Quaternary Science 22, (2007). 209221.CrossRefGoogle Scholar
Chytrý, M. Vegetation of the Czech Republic 3, Aquatic and Wetland Vegetation. (2011). Academia, Praha.Google Scholar
Crowley, P.H. Resampling methods for data analysis in computation-intensive ecology and evolution. Annual Review of Ecology and Systematics 23, (1992). 405447.CrossRefGoogle Scholar
Damman, A.W.H. Hydrology, development and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Canadian Journal of Botany 64, (1986). 384394.Google Scholar
Dudová, L., Hájek, M., and Hájková, P. The origin and vegetation development of the Rejvíz pine bog and the history of the surrounding landscape during the Holocene. Preslia 82, (2010). 223246.Google Scholar
Dudová, L., Hájková, P., Buchtová, H., and Opravilová, V. Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains. The Holocene 23, (2013). 230242.CrossRefGoogle Scholar
Engel, Z., Nývlt, D., Křížek, M., Treml, V., Jankovská, V., and Lisá, L. Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quaternary Science Reviews 29, (2010). 913927.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). John Wiley, Chichester.Google Scholar
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D.K., and Mangini, A. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, (2012). 17511764.CrossRefGoogle Scholar
Ghilardi, B., and O'Connell, M. Early Holocene vegetation and climate dynamics with particular reference to the 8.2 ka event: pollen and macrofossil evidence from a small lake in western Ireland. Vegetation History and Archaeobotany (2012). http://dx.doi.org/10.1007/s00334-012-0367-x Google Scholar
Hájek, M., Horsák, M., Hájková, P., and Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardize fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8, (2006). 97114.Google Scholar
Hájek, M., Hájková, P., Kočí, M., Jiroušek, M., Mikulášková, E., and Kintrová, K. Do we need soil moisture measurements in the vegetation-environment studies in wetlands?. Journal of Vegetation Science 24, (2013). 127137.Google Scholar
Hájková, P., Hájek, M., Rybníček, K., Jiroušek, M., Tichý, L., Králová, Š., and Mikulášková, E. Long-term vegetation changes in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. Journal of Vegetation Science 22, (2011). 891904.Google Scholar
Hájková, P., Grootjans, A., Lamentowicz, M., Rybníčková, E., Madaras, M., Opravilová, V., Michaelis, D., Hájek, M., Joosten, H., and Wolejko, L. How a Sphagnum fuscum dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak spring-fed mire. Journal of Quaternary Science 27, (2012). 233243.Google Scholar
Hedenäs, L. The European species of the Calliergon–Scorpidium–Drepanocladus complex, including some related or similar species. Meylania 28, (2003). 1116.Google Scholar
Hughes, P.D.M., and Barber, K.E. Mire development across the fen–bog transition on the Teifi floodplain at Tregaron Bog, Ceredigion, Wales, and a comparison with 13 other raised bogs. Journal of Ecology 91, (2003). 253264.Google Scholar
Hughes, P.D.M., and Barber, K.E. Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England. The Holocene 14, (2004). 6577.Google Scholar
Jabłońska, E., Pawlikowski, P., Jarzombkowski, F., Chormański, J., Okruszko, T., and Kłosowski, S. Importance of water level dynamics for vegetation patterns in a natural percolation mire (Rospuda fen, NE Poland). Hydrobiologia 674, (2011). 105117.Google Scholar
Jankovská, V. Paläogeobotanische Rekonstruktion der Vegetationsentwicklung im Becken Třeboňská pánev während des Spätglazials und Holozäns. Vegetace ČSSR A11. (1980). Academia, Praha (in German).Google Scholar
Jankovská, V. Late Glacial and Holocene History of Plešné Lake and its surrounding landscape based on pollen and palaeoalgological analyses. Biologia 61, (2006). 371385.Google Scholar
Jankovská, V. Giant Mountains and pollenanalytical research: new results and interesting palaeobotanical findings. Opera Concortica 44, (2007). 207222.Google Scholar
Jankovská, V., and Pokorný, P. Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80, (2008). 307324.Google Scholar
Jankovská, V., Kuneš, P., and van der Knaap, W.O. Fláje-Kiefern (Krušné Hory Mountains): Late Glacial and Holocene vegetation development. Grana 46, (2007). 214216.CrossRefGoogle Scholar
Jeník, J., Bureš, L., and Burešová, Z. Syntaxonomic study of vegetation in Velká Kotlina cirque, the Sudeten Mountains. Folia Geobotanica 15, (1980). 128.Google Scholar
Jiroušek, M., Poulíčková, A., Kintrová, K., Opravilová, V., Hájková, P., Rybníček, K., Kočí, M., Bergová, K., Hnilica, R., Mikulášková, E., Králová, Š., and Hájek, M. Long-term and contemporary environmental conditions as determinants of the species composition of bog organisms. Freshwater Biology (2013). dx.doi.org/10.1111/fwb.12201 Google Scholar
Juggins, S. C2 User Guide, Version 1.5. Software for Ecological and Paleoecological Data Analysis and Visualization. (2003). University of Newcastle, Newcastle upon Tyne.Google Scholar
Juggins, S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science?. Quaternary Science Reviews 64, (2013). 2032.Google Scholar
Kaplan, Z. Flora and phytogeography of the Czech Republic. Preslia 84, (2012). 505573.Google Scholar
Kobashi, T., Severinghaus, J.P., and Barnola, J.-M. 4 ± 1.5°C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice. Earth and Planetary Science Letters 268, (2008). 397407.Google Scholar
Kučera, J., Váňa, J., and Hradílek, Z. Bryophyte flora of the Czech Republic: update of the checklist and Red List and a brief analysis. Preslia 84, (2012). 813850.Google Scholar
Kulczynski, S. Peat bogs of Polesie. Memoires de ľAcadémie Polonaise des Sciences et des Lettres, Serie B (1949). 1356.Google Scholar
Kuneš, P., Pelánková, B., Chytrý, M., Jankovská, V., Pokorný, P., and Petr, L. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. Journal of Biogeography 35, (2008). 22232236.Google Scholar
Lamentowicz, M., and Mitchell, E.A.D. The ecology of testate amoebae (Protists) in Sphagnum in North-western Poland in Relation to Peatland Ecology. Microbial Ecology 50, (2005). 4863.Google Scholar
Lamentowicz, M., Tobolski, K., and Mitchell, E.A.D. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17, (2007). 11851196.Google Scholar
Laminger, H., Schopper, M., Pipp, E., Hensler, I., and Mantel, P. Untersuchungen über Nekrozönosen und Taxozönosen der Testacea (Protozoa) im Zirbenwaldmoor (Obergurgl, Tirol/Austria). Hydrobiologia 77, (1981). 193202. (in German) Google Scholar
Madeyska, E. The history of the Zieleniec mire and the surrounding areas based on the palynological research. Monographiae Botanicae 94, (2005). 145157.Google Scholar
Magny, M., and Haas, J.N. A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. Journal of Quaternary Science 19, (2004). 423430.Google Scholar
Magny, M., Bégeot, C., Guiot, J., and Peyron, O. Constrasting patterns of hydrological changes in Eruope in response to Holocene climate cooling phases. Quaternary Science Reviews 22, (2003). 15891596.Google Scholar
Mauquoy, D., van Geel, B. Elias, S.A., and Elias, S.A. Mire and peat macros. Encyclopedia of Quaternary Science vol. 3, (2007). Elsevier Publishing Company, Amsterdam.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, (2004). 243255.Google Scholar
Mitchell, E.A.D., Warner, B.G., Buttler, A., and Gobat, J.-M. Ecology of testate amoebae (Protozoa:Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience 6, (1999). 565576.Google Scholar
Mitchell, E.A.D., Charman, D.J., and Warner, B.G. The usefulness of testate amoebae analysis in ecological and palaeoecological studies of wetlands: past, present and future. Biodiversity and Conservation 17, (2008). 21152137.Google Scholar
Mitchell, E.A.D., Payne, R.J., van der Knaap, W.O., Lamentowicz, Ł., Gąbka, M., and Lamentowicz, M. The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH. Quaternary Research 79, (2013). 613.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1991). Blackwell, Oxford.Google Scholar
Mušálková, J. Paleoekologická studie rašeliniště Skřítek. (Master thesis) (2010). Masaryk University, Brno (in Czech).Google Scholar
Nalepka, D., and Walanus, A. Data processing in pollen analysis. Acta Palaeobotanica 43, (2003). 125134.Google Scholar
Naughton, F., Bourillet, J.-F., Sánchez Gońi, M.F., Turon, J.-L., and Jouanneau, J.-M. Long-term and millennial-scale climate variability in northwestern France during the last 8850 years. The Holocene 17, (2007). 939953.Google Scholar
Nicholson, B.J., and Vitt, D.H. Wetland development at Elk Island National Park, Alberta, Canada. Journal of Paleolimnology 12, (1994). 1934.Google Scholar
Novák, J., Petr, L., and Treml, V. Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. The Holocene 20, (2010). 895905.Google Scholar
Nožička, J. Přehled vývoje našich lesů. (1957). Státní zemědělské nakladatelství, Praha. (in Czech) Google Scholar
Ogden, C.G., and Hedley, R.H. An Atlas of Freshwater Testate Amoebae. (1980). Oxford University Press, London.Google Scholar
Payne, R.J., Kishaba, K., Blackford, J.J., and Mitchell, E.A.D. Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies. The Holocene 16, (2006). 403414.Google Scholar
Payne, R.J., Telford, R.J., Blackford, J.J., Blundell, A., Booth, R.K., Charman, D.J., Lamentowicz, Ł., Lamentowicz, M., Mitchell, E.A.D., Potts, G., Swindles, G.T., Warner, B.G., and Woodland, W. Testing peatland testate amoeba transfer functions: appropriate methods for clustered training-sets. The Holocene (2011). http://dx.doi.org/10.1177/0959683611430412 Google Scholar
Podborský, V. Pravěké dějiny Moravy. (1993). Muzejní a vlastivědná společnost v Brně, Brno. (in Czech) Google Scholar
Punt, W. The Northwest European Pollen Flora. I. (1976). Elsevier, Amsterdam.Google Scholar
Punt, W., and Blackmore, S. The Northwest European Pollen Flora. VI. (1991). Elsevier, Amsterdam.Google Scholar
Punt, W., and Clarke, G.C.S. The Northwest European Pollen Flora. II. (1980). Elsevier, Amsterdam.Google Scholar
Punt, W., and Clarke, G.C.S. The Northwest European Pollen Flora. III. (1981). Elsevier, Amsterdam.Google Scholar
Punt, W., and Clarke, G.C.S. The Northwest European Pollen Flora. IV. (1984). Elsevier, Amsterdam.Google Scholar
Punt, W., Blackmore, S., and Clarke, G.C.S. The Northwest European Pollen Flora. (1988). V. Elsevier, Amsterdam.Google Scholar
Punt, W., Blackmore, S., and Hoen, P.P. The Northwest European Pollen Flora VII. (1995). Elsevier, Amsterdam.Google Scholar
Punt, W., Blackmore, S., and Hoen, P.P. The Northwest European Pollen Flora VIII. (2003). Elsevier, Amsterdam.Google Scholar
Ralska-Jasiewiczowa, M., Goslar, T., Madeyska, T., and Starkel, L. Lake Gosciaz, central Poland. (1998). W. Szafer Institute of Botany, Krakow.Google Scholar
Ramsey, C.B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, (2009). 337360.Google Scholar
Rasmussen, S.O., Vinther, B.M., Clausen, H.B., and Andersen, K.K. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, (2007). 19071914.Google Scholar
Rasmussen, P., Hede, M.U., Noe-Nygaard, N., Clarke, A.L., and Vinebrooke, R.D. Environmental response to the cold climate event 8200 years ago as recorded at Højby Sø, Denmark. Geological Survey of Denmark and Greenland Bulletin 15, (2008). 5760.Google Scholar
Reille, M. Pollen et Spores d'Europe et d'Afrique du nord. Laboratoire de Botanique Historique et. (1992). Palynologie, Marseille. (in French) Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50 000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Rohling, E.J., and Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8200 years ago. Nature 434, (2005). 975979.CrossRefGoogle Scholar
Rybníček, K., and Rybníčková, E. The history of flora and vegetation on the Bláto mire in southeastern Bohemia, Czechoslovakia (Palaeoecological study). Folia Geobotanica et Phytotaxonomica 3, (1968). 117142.Google Scholar
Rybníček, K., and Rybníčková, E. Vegetation of the Upper Orava region (NW Slovakia) in the last 11000 years. Acta Paleobotanica 42, (2002). 153170.Google Scholar
Rybníček, K., and Rybníčková, E. Pollen analyses of sediments from the summits of the Praděd range in the Hrubý Jeseník Mts (Eastern Sudetes). Preslia 76, (2004). 331348.Google Scholar
Schweingruber, F.H. Microscopic Wood Anatomy. Swiss Federal Institute for Forest. (1978). Snow and Landscape Research, Birmensdorf.Google Scholar
Seppä, H. Elias, S.A. Pollen analysis, principles. Encyclopedia of Quaternary Science vol. 3, (2007). Elsevier Publishing Company, Amsterdam. 24862497.Google Scholar
Seppä, H., Hammarlund, D., and Antonsson, K. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climate. Climate Dynamics 25, (2005). 285297.Google Scholar
Sjögren, P., van der Knaap, W.O., van Leeuwen, J.F.N., Andrič, M., and Grünig, A. The occurrence of an upper decomposed peat layer or ‘kultureller Trockenhorizont’, in the Alps and Jura Mountains. Mires and Peat 2, (2007). 114.Google Scholar
Smith, A.J.E. The Moss Flora of Britain and Ireland. (1996). Cambridge University Press, Cambridge.Google Scholar
Speranza, A., Hanke, J., van Geel, B., and Fanta, J. Late-Holocene human impact and peat development in the Černá Hora bog, Krkonoše Mountains, Czech Republic. The Holocene 10, (2000). 575585.Google Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, (1971). 615621.Google Scholar
Svensson, G. Bog development and environmental conditions as shown by the stratigraphy of Store Moose mire in southern Sweden. Boreas 17, (1988). 89111.Google Scholar
Svobodová, H., Reille, M., and Goeury, C. Past vegetation dynamics of Vltavský luh, upper Vltava river valley in the Šumava mountains, Czech Republic. Vegetation History and Archaeobotany 10, (2001). 185199.Google Scholar
Svobodová, H., Soukupová, L., and Reille, M. Diversified development of mountain mires, Bohemian Forest, Central Europe, in the last 13,000 years. Quaternary International 91, (2002). 123135.Google Scholar
Swindles, G.T., Plunkett, G., and Roe, H. A delayed climatic response to solar forcing at 2800 cal. BP: multi-proxy evidence from three Irish peatlands. The Holocene 17, (2007). 77182.Google Scholar
Tinner, W., and Lotter, A.F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, (2001). 551554.Google Scholar
Tinner, W., and Lotter, A.F. Holocene expansion of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate?. Quaternary Science Reviews 25, (2006). 526549.Google Scholar
Treml, V., Jankovská, V., and Petr, L. Holocene dynamics of the alpine timberline in the High Sudetes. Biologia 63, (2008). 7380.Google Scholar
Väliranta, M., Blundell, A., Charman, D.J., Karofeld, E., Korhola, A., Sillasoo, U., and Tuittila, E.S. Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: a methodological comparison. Quaternary International 268, (2012). 3443.CrossRefGoogle Scholar
van Geel, B., Bohncke, S.J.P., and Dee, H. A palaeoecological study of an upper Late Glacial and Holocene sequence from ‘de Borchert’, The Netherlands. Review of Paleobotany and Palynology 31, (1980–1981). 367448.Google Scholar
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, J., and Hakbijl, T. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, (2003). 873883.CrossRefGoogle Scholar
Walker, D. Direction and rate in some British postglacial hydroseres. Walker, D., and West, R.G. Vegetation History of the British Isles. (1970). Cambridge University Press, Cambridge. 117139.Google Scholar
Wennerberg, H. A study of early Holocene climate changes in Småland, Sweden, with focus on the ‘8.2 kyr event’. Examensarbeten i geologi vid Lunds universitet — Kvartärgeologi 191, (2005). Google Scholar
Supplementary material: File

Dudová et al. supplementary material

Supplementary Material 1

Download Dudová et al. supplementary material(File)
File 59.4 KB
Supplementary material: File

Dudová et al. supplementary material

Supplementary Material 2

Download Dudová et al. supplementary material(File)
File 26.6 KB
Supplementary material: File

Dudová et al. supplementary material

Supplementary Material 3

Download Dudová et al. supplementary material(File)
File 126.5 KB