Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T17:40:28.838Z Has data issue: false hasContentIssue false

High resolution paleoenvironmental and chronological investigations of Norselandnámat Tasiusaq, Eastern Settlement, Greenland

Published online by Cambridge University Press:  20 January 2017

Kevin J. Edwards*
Affiliation:
Departments of Geography and Environment and Archaeology, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK
J. Edward Schofield
Affiliation:
Department of Geography and Environment and Northern Studies Centre, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK
Dmitri Mauquoy
Affiliation:
Department of Geography and Environment and Northern Studies Centre, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK
*
*Corresponding author. Fax: +44 1224 272331.E-mail address:[email protected] (K.J. Edwards).

Abstract

High-resolution paleoenvironmental data from a peat profile with a small pollen source area are used to reconstruct the impacts oflandnámon vegetation and soils at a Norse farm complex (∅2 at Tasiusaq) comprising two farms in the Eastern Settlement of Greenland. Analyses include the AMS14C dating of plant macrofossil samples and the use of Bayesian radiocarbon calibration to construct improved age–depth models for Norse cultural horizons. The onset of a regionallandnámmay be indicated by the clearance ofBetula pubescenswoodland immediately prior to local settlement. The latter is dated to AD 950–1020 (2σ) and is characterised by possible burning ofBetula glandulosascrub to provide grassland pasture for domestic stock. Clearance and grazing resulted in accelerated levels of soil erosion at a westerly farm. This was followed by an easterly migration of settlement and agriculture. Site constraints prevent an assessment of the demise of the easterly farm, but pressures of overgrazing and land degradation may have been the major factors responsible for the abandonment of the earlier farm.

Type
Research Article
Copyright
Elsevier Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaart, J.H., (1976). Ketilidian mobile belt in South Greenland. Escher, A., Stuart Watt, W., Geology of Greenland. Geological Survey of Greenland, Copenhagen., 120151.Google Scholar
Andersen, S.T., (1979). Identification of wild grass and cereal pollen. Danmarks Geologiska Undersøgelse, Årbog 1978, 6992.Google Scholar
Andreasen, C., (1981). Langhus-ganghus-centraliseret gård. Hikuin 7, 179184.Google Scholar
Arneborg, J., (2003). Norse Greenland: reflections on settlement and depopulation. Barrett, J.H., Contact, continuity, and collapse: the Norse colonization of the North Atlantic. Brepols, Turnhout., 163181.Google Scholar
Arneborg, J., Heinemeier, J., Lynnerup, N., Nielsen, H.L., Rud, N., Sveinbjörnsdóttir, A.E., (1999). Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and 14C dating of their bones. Radiocarbon 41, 157168.Google Scholar
Barlow, L.K., Sadler, J.P., Ogilvie, A.E.J., Buckland, P.C., Amorosi, T., Ingimundarson, J.H., Skidmore, P., Dugmore, A.J., McGovern, T.H., (1997). Interdisciplinary investigations of the end of the Norse Western Settlement in Greenland. The Holocene 7, 489499.Google Scholar
Bennett, K.D., (2007). Psimpoll and pscomb programs for plotting and analysis. (http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html, last accessed: 24 April 2007).Google Scholar
Bennett, K.D., Whittington, G., Edwards, K.J., (1994). Recent plant morphological changes and pollen morphology in the British Isles. Quaternary Newsletter 73, 16.Google Scholar
Birks, H.J.B., Line, J.M., (1992). The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2, 110.Google Scholar
Blaauw, M., Christen, J.A., (2005). Radiocarbon peat chronologies and environmental change. Applied Statistics 54, 805816.Google Scholar
Böcher, T.W., (1963). Phytogeography of Greenland in the light of recent investigations. Löve, A., Löve, D., North Atlantic biota and their history. Pergamon Press, Oxford., 285295.Google Scholar
Böcher, T.W., Holmen, K., Jakobsen, K., (1968). The flora of Greenland. P. Haase and Son, Copenhagen.Google Scholar
Box, J.E., (2002). Survey of Greenland instrumental temperature records: 1873–2001. International Journal of Climatology 22, 18291847.Google Scholar
Bradshaw, R.H.W., (1981). Modern pollen-representation factors for woods in south-east England. Journal of Ecology 69, 4570.Google Scholar
Bronk Ramsey, C., (1995). Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425430.Google Scholar
Bronk Ramsey, C., (2001). Development of the radiocarbon program OxCal. Radiocarbon 43, 355363.Google Scholar
Bruun, D., (1896). Arkæologiske Undersøgelser i Julianehaabs Distrikt. Meddelelser om Grønland 16, 3, 171461.Google Scholar
Buck, C.E., Cavanagh, W.G., Litton, C.D., (1996). The Bayesian approach to interpreting archaeological data. Wiley, Chichester.Google Scholar
Buck, C.E., Christen, J.A., James, G.N., (1999). BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7, (http://intarch.ac.uk/journal/issue7/buck).Google Scholar
Buck, C.E., Higham, T.F.G., Lowe, D.J., (2003). Bayesian tools for tephrochronology. The Holocene 13, 639647.Google Scholar
Church, M.J., Arge, S.V., Brewington, S., McGovern, T.H., Woollett, J.M., Perdikaris, S., Lawson, I.T., Cook, G.T., Amundsen, T., Harrison, R., Krivogorskaya, Y., Dunbar, E., (2005). Puffins, pigs, cod and barley: palaeoeconomy at Undir Junkarinsfløtti, Sandoy, Faroe Islands. Environmental Archaeology 10, 179197.Google Scholar
Dugmore, A.J., Newton, A.J., Larsen, G., Cook, G.T., (2000). Tephrochronology, environmental change and the Norse settlement of Iceland. Environmental Archaeology 5, 2134.Google Scholar
Dugmore, A.J., Church, M.J., Buckland, P.C., Edwards, K.J., Lawson, I., McGovern, T.H., Panagiotakopulu, E., Simpson, I.A., Skidmore, P., Sveinbjarnardóttir, G., (2005). The Norse landnám on the North Atlantic islands: an environmental impact assessment. Polar Record 41, 2137.Google Scholar
Dugmore, A.J., Church, M.J., Mairs, K.-.A., McGovern, T.H., Newton, A.J., Sveinbjarnardóttir, G., (2006). An over-optimistic pioneer fringe? Environmental perspectives on medieval settlement abandonment in Þórsmörk, South Iceland. Arneborg, J., Grønnow, B., Dynamics of Northern Societies. National Museum Studies in Archaeology and History vol. 10, National Museum of Denmark, Copenhagen., 335346.Google Scholar
Dugmore, A.J., Borthwick, D.M., Buckland, P.C., Church, M.J., Dawson, A., Edwards, K.J., Keller, C., Mayewski, P., McGovern, T.H., Mairs, K.-A., Sveinbjarnardóttir, G., (2007). The role of climate in landscape and settlement change in the North Atlantic islands: an assessment of cumulative deviations in high-resolution proxy climate records. Human Ecology 35, 169178.CrossRefGoogle Scholar
Edwards, K.J., (1991). Spatial scale and palynology: a commentary on Bradshaw. Harris, D.R., Thomas, K.D., Modelling ecological change. Institute of Archaeology, London., 5359.Google Scholar
Edwards, K.J., Borthwick, D., Cook, G., Dugmore, A.J., Mairs, K.-A., Church, M.J., Simpson, I.A., Adderley, W.P., (2005a). A hypothesis-based approach to landscape change in Suðuroy, Faroe Islands. Human Ecology 33, 621650.Google Scholar
Edwards, K.J., Lawson, I.T., Erlendsson, E., Dugmore, A.J., (2005b). Landscapes of contrast in Viking Age Iceland and the Faroe Islands. Landscapes 6, 6381.Google Scholar
Erlendsson, E., Edwards, K.J., Lawson, I., Véteinsson, , (2006). Can there be a correspondence between Icelandic palynological and settlement evidence?. Arneborg, J., Grønnow, B., Dynamics of Northern Societies. National Museum Studies in Archaeology and History vol. 10, National Museum of Denmark, Copenhagen., 347354.Google Scholar
Feilberg, J., (1984). A phytogeographical study of South Greenland. Vascular plants. Meddelelser om Grønland, Bioscience 15, 169.Google Scholar
Fredskild, B., (1973). Studies in the vegetational history of Greenland. Meddelelser om Grønland 198, 1245.Google Scholar
Fredskild, B., (1978). Palaeobotanical investigations of some peat deposits of Norse age at Qagssiarssuk, south Greenland. Meddelelser om Grønland 204, 141.Google Scholar
Fredskild, B., (1988). Agriculture in a marginal area — south Greenland from the Norse landnam (985 AD) to the present (1985 AD). Birks, H.H., Birks, H.J.B., Kaland, P.E., Moe, D., The cultural landscape — past, present & future. Cambridge University Press, Cambridge., 381393.Google Scholar
Fredskild, B., (1992). Erosion and vegetational changes in South Greenland caused by agriculture. Geografisk Tidsskrift 92, 1421.Google Scholar
Grime, J.P., Hodgson, J.G., Hunt, R., (1988). Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London.Google Scholar
Grimm, E.C., (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geoscience 13, 1335.Google Scholar
Grimm, E.C., (1991). TILIA and TILIAGRAPH. Illinois State Museum, Springfield.Google Scholar
Grimm, E.C., (2007). TGView version 2.0.2. http://museum.state.il.us/pub/grimm/ (last accessed 24 April 2007).Google Scholar
Guldager, O., Stummann Hansen, S., Gleie, S., (2002). Medieval Farmsteads in Greenland. The Brattahlid Region 1999–2000. Danish Polar Center, Copenhagen.Google Scholar
Hicks, S., Hyvärinen, H., (1999). Pollen influx values measured in different sedimentary environments and their palaeoecological implications. Grana 38, 228242.Google Scholar
Hill, M.O., Gauch, H.G. Jr., (1980). Detrended Correspondence Analysis: an improved ordination technique. Vegetatio 42, 4758.Google Scholar
Holm, G.F., (1883). Ruiner i Julianehaabs Distrikt. Meddelelser om Grønland 6, 3, 57145.Google Scholar
Jacobson, G.L., Bradshaw, R.H.W., (1981). The selection of sites for paleovegetational studies. Quaternary Research 16, 8096.Google Scholar
Jones, G., (1968). A History of the Vikings. Oxford University Press, Oxford.Google Scholar
Jowsey, P.C., (1966). An improved peat sampler. New Phytologist 65, 245248.Google Scholar
Krogh, K.J., (1967). Viking Greenland. National Museum, Copenhagen.Google Scholar
Lamb, H.H., (1977). Climate: present, past and future. Volume 2: climatic history and the future. Methuen and Co Ltd, London.Google Scholar
Magnusson, M.B., Pálsson, H., (1965). The Vinland sagas: the Norse discovery of America. Penguin, London.Google Scholar
Mäkelä, E., Hyvärinen, H., (1998). Holocene vegetation history at Vätsäri, Inari Lapland, northeastern Finland, with special reference to Betula . The Holocene 10, 7585.Google Scholar
McCune, B., Mefford, M.J., (1999). PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McGhee, R., (2003). Epilogue: was there continuity from Norse to post-Medieval explorations of the New World?. Barrett, J.H., Contact, continuity, and collapse: the Norse colonization of the North Atlantic. Brepols, Turnhout., 239248.Google Scholar
McGovern, T.H., (1981). The economics of extinction in Norse Greenland. Wigley, T.M.L., Ingram, M.J., Farmer, G., Climate and history: studies in past climates and their impact on man. Cambridge University Press, Cambridge., 404434.Google Scholar
McGovern, T.H., (1985). Contributions to the palaeoeconomy of Norse Greenland. Acta Archaeologica 54, 73122.Google Scholar
McGovern, T.H., (2000). The demise of Norse Greenland. Fitzhugh, W.W., Ward, E.I., Vikings: The North Atlantic Saga. Smithsonian Institution Press, Washington DC., 327339.Google Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., Kárlen, W., (2005). Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613617.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen analysis. Blackwell, Oxford.Google Scholar
Ólafsson, G., Ágústsson, H., (2006). The reconstructed medieval farm in Þjórsárdalur and the development of the Icelandic turf house. National Museum of Iceland and Landsvirkjun, Reykjarvík.Google Scholar
Panagiotakopulu, E., Skidmore, P., Buckland, P.C., (2007). Fossil insect evidence for the end of the Western Settlement in Norse Greenland. Naturwissenschaften 94, 300306.Google Scholar
Patterson, W.A., Edwards, K.J., Maguire, D.J., (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6, 323.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46, 10291058.Google Scholar
Roussell, A., (1941). Farms and churches in the Mediaeval Norse settlements of Greenland. Meddelelser om Grønland 89, 1, 1354.Google Scholar
Sandgren, P., Fredskild, B., (1991). Magnetic measurements recording Late Holocene man-induced erosion in S. Greenland. Boreas 20, 315331.Google Scholar
Schofield, J.E., Edwards, K.J., McMullen, A.J., (2007). Modern pollen-vegetation relationships in subarctic southern Greenland and the interpretation of fossil pollen data from the Norse landnám . Journal of Biogeography 34, 473488.Google Scholar
Schofield, J.E., Edwards, K.J., Christensen, C., in press. Environmental impacts around the time of Norse landnám in the Qorlortoq valley. Eastern Settlement, Greenland. Journal of Archaeological Science.Google Scholar
Seaver, K.A., (1996). The frozen echo: Greenland and the exploration of North America, ca. A.D. 1000–1500. Stanford University Press, Stanford, California.Google Scholar
Smith, A.J.E., (1978). The moss flora of Britain and Ireland. Cambridge University Press, Cambridge.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stuiver, M., Grootes, P.M., Braziunas, T.F., (1995). The GISP2 δ 18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, 341354.Google Scholar
Swain, A.W., (1978). Environmental changes during the past 2000 years in north-central Wisconsin: analysis of pollen, charcoal, and seeds from varved lake sediments. Quaternary Research 10, 5568.Google Scholar
Troels-Smith, J., (1955). Characterisation of unconsolidated sediments. Danmarks Geologiske Undersogelse, Series IV 3, 173.Google Scholar
Tweddle, J.C., Edwards, K.J., Fieller, N.R.J., (2005). Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Vegetation History and Archaeobotany 14, 1530.Google Scholar
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, G., Hakbijl, T., (2003). Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.Google Scholar
Yeloff, D., Bennett, K.D., Blaauw, M., Mauquoy, D., Sillasoo, U., van der Plicht, J., van Geel, B., (2006). High precision 14C dating of Holocene peat deposits: a comparison of Bayesian calibration and wiggle-matching approaches. Quaternary Geochronology 1, 222235.Google Scholar