Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T19:01:16.291Z Has data issue: false hasContentIssue false

The Growth and Decay of the Late Weichselian Ice Sheet in Western Svalbard and Adjacent Areas Based on Provenance Studies of Marine Sediments

Published online by Cambridge University Press:  20 January 2017

Anders Elverhøi
Affiliation:
University of Oslo, Department of Geology, P.O. Box 1047, Blindern N-0316 Oslo, Norway
Espen S. Andersen
Affiliation:
University of Oslo, Department of Geology, P.O. Box 1047, Blindern N-0316 Oslo, Norway
Trond Dokken
Affiliation:
University of Tromsø, Department of Biology and Geology, N-9037, Tromsø, Norway
Dierk Hebbeln
Affiliation:
Universität Bremen, Fachbereich Geowissenschaften, Postfach 330440, D-28334 Bremen, Germany
Robert Spielhagen
Affiliation:
GEOMAR, Research Center for Marine Geosciences, Wischhofstrasse, I-3, D-24148 Kiel, Germany
John Inge Svendsen
Affiliation:
University of Bergen, Center for Studies of Environment and Resource, Høyteknologisenteret, N-5020 Bergen, Norway
Marit Sørflaten
Affiliation:
University of Oslo, Department of Geology, P.O. Box 1047, Blindern N-0316 Oslo, Norway
Arnt Rørnes
Affiliation:
University of Tromsø, Department of Biology and Geology, N-9037, Tromsø Norway,
Morten Hald
Affiliation:
University of Tromsø, Department of Biology and Geology, N-9037, Tromsø Norway,
Carl Fredrik Forsberg
Affiliation:
Norwegian Polar Institute, Middelthunsgt. 29, P.O. Box 5072, Majorstua 0301, Oslo, Norway

Abstract

The history of the Late Weichselian northwestern Barents Shelf, including western Svalbard, has been investigated by provenance/sedimentologist studies of five cores from the continental shelf and slope west of Svalbard. The chronostratigraphy of the cores is based on AMS 14C dates and oxygen isotope analyses. Interpretations of the cores suggest that the ice sheets of western Svalbard and northwestern Barents Sea experienced advances and retreats in two steps. The first significant ice advance beyond the present coastline occurred ca. 22,000 14C yr B.P. and was followed by an ice advance to the shelf edge ca. 18,000 14C yr B.P. Ice recession from the outer shelf and the southwestern Barents Sea began 14,800 14C yr B.P. and was followed by a second ice recession between 13,000 and 12,000 14 C yr B.P. during which ice withdrew from the inner shelf. A minor readvance of the ice sheet on the shelf west of Svalbard occurred close to 12,400 14C yr B.P. The first deglaciation event was associated with release of icebergs containing ice-rafted detritus, while the later episode also included significant amounts of meltwater and fine-grained sediment.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alm, T. (1993). 0vre Æråsvatn—Palynostratigraphy of a 22,000 to 10,000 BP lacustrine record on Andøya, northern Norway. Boreas 22 , 171188.Google Scholar
Andersen, E. S. Solheim, A., and Elverhøi, A. (1994). Development of a glaciated arctic continental margin: Exemplified by the western margin of Svalbard. In “International Conference on Arctic Margins (ICAM): Proceedings, Anchorage, Alaska, 1992” (Thurston, D. K. and Fujita, K., Eds.), pp. 155160. U.S. Department of the Interior, Mineral Management Service, Alaska Outer Continental Shelf Region, OCS Study, MMS 940040.Google Scholar
Andersen, E. S. (1995). “Sedimentary Development of Glaciated Margins: The Svalbard Margin and the Northern North Sea During the Plio- and Pleistocene.” Ph.D dissertation, University of Oslo.Google Scholar
Bjærke, T. (1993). “Palynonlogical Analyses of Rock Fragments from the Svalbard margin.” Unpublished report, University of Oslo. 15 pp.Google Scholar
Bjørlykke, K. Bue, B., and Elverhøi, A. (1978). Quaternary sediments in the northwestern part of the Barents Sea and their relation to the underlying Mesozoic bedrock. Sedimentology 25 , 227246.Google Scholar
Bond, G. Heinrich, H. Broecker, W. Labeyrie, L. McManus, J. Andrews, J. Huon, S. Jantschik, R. Clasen, S. Simet, C. Tedesco, K. Klas, M. Bonani, G., and Ivy, S. (1992). Evidence for massive discharge of icebergs into the North Atlantic ocean during the last glacial period, Nature 360 , 245249.Google Scholar
Dokken, T. (1995). “Paleoceanographic Changes during the Last Interglacial-Glacial Cycle from the Svalbard-Barents Sea Margin: Implications for Ice-Sheet Growth and Decay.” Ph.D. dissertation, University of Tromsø.Google Scholar
Dowdeswell, J. A., and Dowdeswell, E. K. (1989). Debris in icebergs and rates of glaciomarine sedimentation: Observations from Spitsbergen and a simple model. Journal of Geology 97, 221231.Google Scholar
Dowdeswell, J. A. Whittington, R. J., and Hodgkins, R. (1992). The size, frequencies and freeboard of east Greenland icebergs observed using ship radar and sextant. Journal of Geophysical Research 97 , 35153528.Google Scholar
Ehrmann, W., and Thiede, J. (1985). History of Mesozoic and Cenozoic sediment fluxes to the North Atlantic Ocean. Contribution Sedimentology 15, 109.Google Scholar
Elverhøi, A. Pfirman, S. L. Solheim, A., and Larsen, B. B, (1989). Glaciomarine sedimentation on epicontinental seas—As exemplified by the northern Barents Sea. Marine Geology 85 , 5966.Google Scholar
Elverhøi, A. Fjeldskaar, W. Solheim, A. Nyland-Berg, M., and Russwurm, L. (1993). The Barents Sea—A model of it’s growth and decay during the last ice maximum. Quaternary Science Review 12, 863873.Google Scholar
Elverhøi, A. Svendsen, J. I. Solheim, A. Andersen, E. S. Milliman, J. D. Mangerud, J., and Hooke, LeB. R, (1995). Late Quaternary sediment yield from the high Arctic Svalbard area. Journal of Geology 103 , 117.Google Scholar
Emerson, S., and Hedges, J. I. (1988). Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3 , 621634.Google Scholar
Hebbeln, D. (1992). Weichselian glacial history of the Svalbard area: Correlating the marine and terrestrial records. Boreas 21 , 295304.Google Scholar
Hebbeln, D. Dokken, T. Andersen, E. S. Hald, M., and Elverhøi, A. (1994). Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370 , 357360.Google Scholar
Hopkins, T. T. (1991). The GIN Sea—A synthesis of its physical oceanography and literature review 1972-1985. Earth-Science Reviews 30 , 175318.Google Scholar
Hughes, T. J. (1992). Theoretical calving rates from glaciers along ice walls grounded in water of variable depths. Journal of Glaciology 38 , 282294.Google Scholar
Johansen, S. Ostisty, B. K. Birkeland, Ø. Fedorovsky, V. N. Bruun Christensen, O. Cheredeev, S. I. Ignatenko, E. A., and Margulis, L. S. (1992). Hydrocarbon potential in the Barents Sea region: Play distribution and potential. In “Arctic Geology and Petroleum Potential” (Vorren, T. O. Bergsager, A. Dahl-Stamnes, Ø. A. Holter, E Johansen, B Lie, E., and Lund, T. B., Eds.), Norsk Petroleumsforening/NPF Special Publication, pp 273320, Elsevier, Amsterdam.Google Scholar
Jones, G. A., and Keigwin, L. D. (1988). Evidence from Fram Strait (78° N) for early deglacíation. Nature 336 , 5659.Google Scholar
MacAyeal, D. R. (1993). Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich Events. Paleoceanography 8 , 775784.Google Scholar
Mangerud, J. Larsen, E. Longva, O., and Sønstegaard, E. (1979). Glacial history of western Norway 15,000-10,000 B.P. Boreas 8 , 179187.Google Scholar
Mangerud, J. Bolstad, M. Elgersma, A. Helliksen, D. Landvik, J. Y. Lønne, I. Lcyke, A. K. Salvigsen, O. Sandahl, T., and Svendsen, J. I. (1992). The Last Glacial Maximum on Spitsbergen, Svalbard. Quaternary Research 38 , 131.Google Scholar
Mangerud, J., and Gulliksen, S. (1975). Apparent radiocarbon ages of recent marine shell from Norway, Spitsbergen, and Arctic Canada. Quaternary Research 5, 263273.Google Scholar
Mangerud, J., and Svendsen, J. I. (1992). The last interglacial-glacial period on Spitsbergen, Svalbard. Quaternary Science Review 11, 633664.Google Scholar
Pearson, M. J. (1990). Clay mineral distribution and provenance in Mesozoic and Tertiary mudrocks of the Moray Firth and northern North Sea. Clay Minerals 23 , 519541.Google Scholar
Pfirman, S. L. Wollenburg, I. Thiede, J., and Lange, M. A. (1989). Lithogenic sediment on Arctic pack ice: Potential aeolian flux and contribution to deep sea sediments. In “Paleoclimatology and Paleometeorology: Modem and Past Patterns of Global Atmospheric Transport” (Leinenand, M. and Samthein, M., Eds.), NATO ASI Series C 282, pp. 463493. Kluwer, Dordrecht.Google Scholar
Samthein, M. Jansen, E. Arnold, M. Duplessy, J. C. Erlenkeuser, H. Flatøy, A. Veum, T. Vogelsang, E., and Weinelt, M. S. (1992). dls O time-reconstructions of meltwater anomalies at termination I in the North Atlantic between 50 and 80°N. In “The Last Deglaciation: Absolute and radiocarbon Chronologies” (Bard, E. and Broecker, W. S., Eds.), NATO ASI Series 2, pp. 113, Springer, Berlin.Google Scholar
Sejrup, H. P. Haflidason, H. Aarseth, I. King, E. Forsberg, C. F. Long, D., and Rokoengen, K. (1994). Late Weichselian glaciation history of the northern North Sea. Boreas 3 , 113.Google Scholar
Siegert, M. J., and Dowdeswell, J. A. (1995). Modelling ice sheet sensitivity to Late Weichselian environment in the Svalbard-Barents Sea region. Journal of Quaternary Science 10 , 3343.Google Scholar
Sigmond, E. M. O. (1992). “Bedrock Map of Norway and Adjacent Ocean Areas,” Scale 1: 3 million. Geological Survey of Norway.Google Scholar
Solheim, A. Russwurm, L. Elverhøi, A., and Nyland-Berg, M. (1990). Glacial geomorphic features: Direct evidence for grounded ice in the northern Barents Sea and implications for the pattern of deglaciation and late glacial sedimentation. Geological Society of London Special Publication 53 , 253268.Google Scholar
Spielhagen, R. F. (1991). Die Eisdrift in der Fram Strasse wahrend der letzen 200,000 Jahre. Geomar Report 4 , 1144. [Kiel] Google Scholar
Svendsen, J. I. Mangerud, J. Elverhøi, A. Solheim, A., and Schiittenhelm, R. T. E. (1992). The Late Weichselian glacial maximum on western Spitsbergen inferred from offshore sediment cores. Marine Geology 104 , 117.Google Scholar
Vinje, T. (1985). Drift, composition, morphology and distribution of the sea ice fields in the Barents Sea. Norsk Polarinstitutt Skrifter 179C , 126.Google Scholar
Vorren, T. O. Hald, M., and Lebesbye, E. (1988). Late Cenozoic environment in the Barents Sea. Paleoceanography 3 , 601612.Google Scholar