Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T09:21:44.222Z Has data issue: false hasContentIssue false

Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (eastern Carpathians)

Published online by Cambridge University Press:  13 November 2020

Piotr Kłapyta*
Affiliation:
Jagiellonian University, Faculty of Geography and Geology, Institute of Geography and Spatial Management, 30-387Krakow, Poland
Marcel Mîndrescu
Affiliation:
Geography Department, University of Suceava, 13, Universitatii st, Suceava, 720229, Romania
Jerzy Zasadni
Affiliation:
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059Krakow, Poland
*
*Corresponding author at: E-mail address: [email protected] (Piotr Kłapyta).

Abstract

In the eastern Carpathians the legacy of glaciation is preserved in several isolated mountain massifs. This paper presents new mapping results of glaciated valley land systems in the Rodna Mountains, the highest part of the eastern Carpathians (2303 m above seal level). In most of the glacial valleys, the maximal Pleistocene extent is marked by freshly shaped moraines, which are referred in this study as the Pietroasa glacial stage and regarded as the last glacial maximum (LGM) advance. Only in three valleys do older Şesura glacial stage moraines (pre-LGM, likely Marine Oxygen Isotope Stage 6) occur. On the basis of the geomorphological record, we reconstruct the extent, surface geometry, and equilibrium line altitude (ELA) of Pietroasa-stage glaciers. The local ELA pattern of north-exposed glaciers in the Rodna Mountains shows a rising trend towards the southeast, which suggests dominant snow-bearing winds and orographically induced precipitation from the west. This finding fits well with the dominant palaeo-wind direction inferred from other Carpathian proxies and confirms the dominance of zonal circulation pattern during the global LGM in central eastern Europe.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R., Siegert, M., Payne, A.J., 2008. Reconstructing glacier-based climates of LGM Europe and Russia—Part 2: a dataset of LGM precipitation/temperature relations derived from degree-day modelling of paleo glaciers. Climate of the Past 4, 249263.CrossRefGoogle Scholar
Baroni, C., Guidobaldi, G., Salvatore, M.C., Christl, M., Ivy-Ochs, S., 2018. Last glacial maximum glaciers in the Northern Apennines reflect primarily the influence of southerly storm-tracks in the western Mediterranean. Quaternary Science Reviews 197, 352367.CrossRefGoogle Scholar
Benn, D.I., Hulton, N.R.J., 2010. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computer Geoscience 36, 605610.CrossRefGoogle Scholar
Benn, D.I., Lehmkuhl, F., 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65/66, 1529.CrossRefGoogle Scholar
Benn, D.I., Owen, L.A., Osmaston, H.A., Seltzer, G.O., Porter, S.C., Mark, B., 2005. Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International 138139, 8–21.Google Scholar
Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Markovič, S.B., Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quaternary International 234, 6274.CrossRefGoogle Scholar
Bradák, B., 2009. Application of anisotropy of magnetic susceptibility (AMS) for the determination of paleo-wind directions and paleo-environment during the accumulation period of Bag Tephra, Hungary. Quaternary International 198, 7784.CrossRefGoogle Scholar
Braithwaite, R.J., 2015. From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA). Cryosphere 9, 21352148.CrossRefGoogle Scholar
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Marković, S., Glaser, I., Gerasimenko, N., 2008. Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27, 10581075.CrossRefGoogle Scholar
Černa, B., Engel, Z., 2011. Surface and sub-surface Schmidt hammer rebound value variation for a granite outcrop. Earth Surface Processes and Landforms 36, 170179.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Coldea, G., 1990. Muntii Rodnei. Studiu geobotanic, Edit. Acadamiei Române, Bucharest.Google Scholar
Colman, S.M., 1981. Rock-weathering rates as functions of time. Quaternary Research 15, 250264.CrossRefGoogle Scholar
Colman, S.M., Dethier, D.P., 1986. Rates of Chemical Weathering of Rock and Minerals. Academic Press, Orlando, FL.Google Scholar
Constantin, S., Bojar, A.M., Lauritzen, S.E., Lundberg, J. 2007. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243, 322338.CrossRefGoogle Scholar
Cordoneanu, E., Banciu, D., 1991. O situație de anticiclogeneza “intracarpatica.” Studii și Cercetări–Geof. 29.Google Scholar
Cuffey, K., Paterson, W.S.B., 2010. The Physics of Glaciers. 4rd ed. Academic Press, USA.Google Scholar
Czirbusz, G., 1896. Hegyen-völgön. A Radnai havasokon, Erdély 5, 1012.Google Scholar
Day, M.J., Goudie, A.S., 1977. Field assessment of rock hardness using the Schmidt test hammer. British Geomorphology Research Group Technical Bulletin 18, 1929.Google Scholar
Donisa, N., 2005. Restoration forest habitata from Pietrosul Rodnei biosphere Reserve. Life-Nature Project, Bucharest.Google Scholar
Dragotă, C.S., 2006. Precipitațiile excedentare din România. Edit. Academiei Române, Bucharest.Google Scholar
Dragotă, C.S., Kucsicsa, G., 2011. Global climate change-related particularities in the Rodnei mountains National Park. Carpathian Journal of Earth and Environmental Sciences, 4350.Google Scholar
Drăguşin, V., Staubwasser, M., Hoffmann, D.L., Ersek, V., Onac, B.P., Veres, D., 2014. Constraining Holocene hydrological changes in the Carpathian-Balkan region using speleothem 18O and pollen-based temperature reconstructions. Climate of the Past 10, 381427.CrossRefGoogle Scholar
Dzierżek, J., 2009. Paleogeografia wybranych obszarów Polski w czasie ostatniego zlodowacenia. Acta Geographica Lodziensia 95, 1112.Google Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), 2011. Quaternary Glaciations Extent and Chronology: A Closer Look. Developments in Quaternary Science 16. Elsevier, Amsterdam.Google Scholar
Engel, Z., Braucher, R., Traczyk, A., Laetitia, L., Team, Aster, 2014. 10Be exposure age chronology of the last glaciation in the Krkonose Mountains, Central Europe. Geomorphology 206, 107121.Google Scholar
Engel, Z., Mentlík, P., Braucher, R., Minár, J., Léanni, L., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., Team, Aster, 2015. Geomorphological evidence and 10Be exposure ages for the last glacial maximum and deglaciation of the Velká and Malá Studená dolina valleys in the High Tatra Mountains, central Europe. Quaternary Science Reviews 124, 106123.CrossRefGoogle Scholar
Evans, I.S., 1977. World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler 59A, 151–175.Google Scholar
Evans, I.S., 2006. Local aspect asymmetry ofmountain glaciation: a global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology 73, 166184.CrossRefGoogle Scholar
Evans, I.S., Cox, N.J., 1995. The form of glacial cirques in the English Lake District, Cumbria. Zeitschrift für Geomorphologie N.F. 39, 175202.CrossRefGoogle Scholar
Federici, P.R., Ribolini, A., Spagnolo, M., 2016. Glacial history of the Maritime Alps from the Last Glacial Maximum to the Little Ice Age. Geological Society of London Special Publication 433, 137159.CrossRefGoogle Scholar
Feurdean, A., Perşoiu, A., Tanţău, I., Stevens, T., Magyari, E. K., Onac, B. P., Marković, S., et al. ., 2014. Climate variability and associated vegetation response throughout central and eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews 106, 206224.CrossRefGoogle Scholar
Florineth, D., Schlüchter, C., 2000. Alpine evidence for atmospheric circulation patterns in Europe during the last glacial maximum. Quaternary Research 54, 295308.CrossRefGoogle Scholar
Frauenfelder, R., Laustela, M., Kääb, A., 2005. Relative age dating of Alpine rock glacier surfaces. Zeitschrift für Geomorphologie 49, 145166.Google Scholar
Furbish, D.J., Andrews, J.T., 1984. The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology 30, 199211.CrossRefGoogle Scholar
Gheorghiu, D., 2012. Testing Climate Synchronicity since the Last Glacial Maximum between Scotland and Romania. PhD thesis, University of Glasgow, Glasgow.Google Scholar
Graf, A.A., Strasky, S., Ivy-Ochs, S., Akcar, N., Kubik, P., Burkhard, M., Schluchter, C., 2007. First results of cosmogenic dated pre-Last Glaciation erratics from Montoz area, Jura Mountains, Switzerland. Quaternary International 164–156: 43–52.Google Scholar
Hallet, B., Putkonen, J.K., 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937940.CrossRefGoogle ScholarPubMed
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.CrossRefGoogle Scholar
Hofer, D., Raible, C. C., Merz, N., Dehnert, A., Kuhlemann, J., 2012. Simulated winter circulation types in the North Atlantic and European region for preindustrial and glacial conditions. Geophyscial Research Letters 39, L15805.Google Scholar
Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle: evaluating the meaning and significance of the “last glacial maximum”(LGM). Earth-Science Reviews 125, 171198.CrossRefGoogle Scholar
Jámbor, Á., 1992. A magyarországi pleisztocén éleskavics előfordulások és földtani jelentőségük. [Occurrences and importance of the Pleistocene ventifacts in Hungary]. Földtani Közlöny 132, 101116.Google Scholar
Keller-Pirklbauer, A., Wangensteen, B., Farbrot, H., Etzemüller, B., 2008. Relative surface age-dating of rock glacier system near Hólar in Hjaltadalur, northern Iceland. Journal of Quaternary Science 23, 2, 137151.CrossRefGoogle Scholar
Kern, Z., László, P., 2010. Size specific steady-state accumulation-area ratio: an improvement for equilibrium-line estimation of small palaeoglaciers. Quaternary Science Reviews 29, 27812787. ]CrossRefGoogle Scholar
Kerschner, H., Ivy-Ochs, S., 2008. Palaeoclimate from glaciers: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60, 5871.CrossRefGoogle Scholar
Kerschner, H., Kaser, G., Sailer, R., 2000. Alpine Younger Dryas glaciers as palaeoprecipitation gauges. Annales of Glaciology 31, 8084.CrossRefGoogle Scholar
Kłapyta, P., 2013. Application of Schmidt hammer relative age dating to Late Pleistocene moraines and rock glaciers in the Western Tatra Mountains, Slovakia. Catena 111, 104121.CrossRefGoogle Scholar
Kłapyta, P., Zasadni, J., 2018. Research history on the Tatra Mountains glaciations. Studia Geomorphologica Carpatho-Balcanica 51, 4385.Google Scholar
Kräutner, T., 1930. Die Spuren der Eiszeit in den Ost- und Süd-Karpathen. Geologisch-morphologische Studie, Verhandl. und Mitt. des Siebenbürg. Vereins für Naturwissenschaften zu Hermannstadt 2930, 10–85.Google Scholar
Kuhlemann, J., Dobre, F., Urdea, P., Krumrei, I., Gachev, E., Kubik, P., Rahn, M., 2013. Last glacial maximum glaciation of the central south Carpathian Range (Romania). Austrian Journal of Earth Sciences 106, 8395.Google Scholar
Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean circulation during the last glacial maximum. Science 321, 13381340.CrossRefGoogle ScholarPubMed
Laîné, A., Kageyama, M., Salas-Mélia, D., Voldoire, A., Riviere, G., Ramstein, G., Planton, S., Tyteca, Ć.S., Peterschmitt, J. Y., 2009. Northern Hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation. Climate Dynamics 32, 593614.CrossRefGoogle Scholar
László, P., Kern, Z., Nagy, B., 2013. Late Pleistocene glaciers in the western Rodna Mountains, Romania. Quaternary International 293, 7991.CrossRefGoogle Scholar
Layos, V., 1927. A Radi keleti felenek glacialis jelensegei, Foldrajazi kozlemeneyek, 55, Budapesti.Google Scholar
Lehmann, P.W., 1891. Der ehemalige Gletscher des Lalatales im Rodnaergebirge. Petermanns Mitteilungen 37, 9899.Google Scholar
Ludwig, P., Pinto, J.G., Raible, C.C., and Shao, Y., 2017. Impacts of surface boundary conditions on regional climate model simulations of European climate during the last glacial maximum. Geophysical Research Letters 44, 50865095.CrossRefGoogle Scholar
Ludwig, P., Schaffernicht, E.J., Shao, Y., Pinto, J.G., 2016. Regional atmospheric circulation over Europe during the last glacial maximum and its links to precipitation. Journal of Geophysical Research: Atmospheres 121, 21302145.Google Scholar
Luetscher, M., Boch, R., Sodemann, H., Spötl, V., Cheng, H., Edwards, R. L., Frisia, S., Hof, V., Müller, W. 2015. North Atlantic storm track changes during the last glacial maximum recorded by Alpine speleothems. Nature Communication 6, 6344.CrossRefGoogle ScholarPubMed
Magyari, E.K., Veres, D., Wennrich, V., Wagner, B., Braun, M., Jakab, G., Karátson, D., et al. ., 2014. Vegetation and environmental responses to climate forcing during the last glacial maximum and deglaciation in the east Carpathians: attenuated response to maximum cooling and increased biomass burning. Quaternary Science Reviews 106, 278298.CrossRefGoogle Scholar
Makos, M., Dzierżek, J., Nitychoruk, J., Zreda, M., 2014. Timing of glacier advances and climate in the High Tatra Mountains (western Carpathians) during the last glacial maximum. Quaternary Research 82, 113.CrossRefGoogle Scholar
Makos, M., Rinterknecht, V., Braucher, R., Tołoczko-Pasek, A., Team, Aster, 2018. Last glacial maximum and lateglacial in the Polish High Tatra Mountains—revised deglaciation chronology based on the 10Be exposure age dating. Quaternary Science Reviews 187, 130156.CrossRefGoogle Scholar
Makos, M., Rinterknecht, V., Braucher, R., Żarnowski, M., Aster Team, 2016. Glacial chronology and palaeoclimate in the Bystra catchment, western Tatra Mountains (Poland) during the late Pleistocene. Quaternary Science Reviews 134, 7491.CrossRefGoogle Scholar
Marković, S.B., Bokhorst, M.P., Vandenberghe, J., McCoy, W.D., Oches, E.A., Hambach, U., Gaudenyi, T., Jovanović, M., Stevens, T., Zöller, L., Machalett, B., 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, North Serbia. Journal of Quaternary Science 23, 7384.Google Scholar
Marks, L., Makos, M., Szymanek, M., Woronko, B., Dzierżek, J., Majecka, A., 2019. Late Pleistocene climate of Poland in the mid-European context. Quaternary International 504, 2439.CrossRefGoogle Scholar
Martonne, E. de, 1924. Excursion géographiques de l'Institut de Géographie de l'Université de Cluj en 1921. Résultats scientifiques, Lucrările Institutului de Geografie al Universității din Cluj 1, 43211.Google Scholar
Matthews, J.A., Shakesby, R.A., 1984. The status of the “Little Ice Age” in southern Norway: relative dating of Neoglacial moraines with Schmidt hammer and lichenometry. Boreas 13, 333346.CrossRefGoogle Scholar
McCarroll, D., 1989. Schmidt hammer relative-age evaluation of a possible pre-“Little Ice Age” Neoglacial moraine, Leirbreen, southern Norway. Norsk Geologisk Tidsskrift 69, 125130.Google Scholar
Mentlík, P., Engel, Z., Braucher, R., Léanni, L., Team, Aster, 2013. Chronology of the Late Weichselian glaciation in the Bohemian forest in central Europe. Quaternary Science Reviews 65, 120128.CrossRefGoogle Scholar
Micu, D.M., Dumitrescu, A., Cheval, S., Birsan, M.V., 2015. Climate of the Romanian Carpathians. Variability and Trends. Springer, Cham, Switzerland.Google Scholar
Mîndrescu, M., 2008. A new glaciated area in Rodna mountains: Tarnita din Ciung cirque. Analele Universității Ştefan cel Mare. Suceava, Sectiunea Geografie, Anul 17, 7986.Google Scholar
Mîndrescu, M., 2016. Geomorfmetria circurilor glaciare din Carpații Româneşti. Editura Universității Ştefan cel Mare, Suceava, pp. 1173.Google Scholar
Mîndrescu, M., Evans, I.S., 2014. Cirque form and development in Romania: allometry and the buzzsaw hypothesis. Geomorphology 208, 117136.CrossRefGoogle Scholar
Mîndrescu, M., Evans, I.S., Cox, N.J., 2010. Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods. Journal of Quaternary Science 25, 875888.CrossRefGoogle Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the boreal icesheets game. Scientific Reports 7, 2078.CrossRefGoogle Scholar
Morariu, T., 1940. Contributini la glaciautiunea din Munti Rodnei. Revista geografica romana 3, 6072.Google Scholar
Niedzielski, T., Migoń, P., Placek, A., 2009. A minimum sample size required from Schmidt hammer measurements. Earth Surface Processes and Landforms 34, 17131725.CrossRefGoogle Scholar
Ohmura, A., Boettcher, M., 2018. Climate on the equilibrium line altitudes of glaciers: Theoretical background behind Ahlmann's P/T diagram. Journal of Glaciology 64, 489505.CrossRefGoogle Scholar
Orghidan, N., 1910. Urme de ghetari in Munti Rodnei, Valea Bistritioaraei. Anuar de geografie si antropogeografie 1, 7784.Google Scholar
Osmaston, H., 2005. Estimates of glacier equilibrium line altitudes by the area × altitude, the area × altitude balance ratio and the area × altitude balance index methods and their validation. Quaternary International 138139, 22–31.Google Scholar
Pawłowski, S., 1936. Les Karpates a l'epoque glaciaire. In: du. Congrès Géogr, C. R.. International à Varsovi, Travaux de la section II, 2, pp. 89141.Google Scholar
Pawłowski, S., Pokorny, W., 1907. Studia lodowcowe w górach Rodniańskich. Sprawozdanie z posiedzeń naukowych w sekcyach X Zjazdu Lekarzy i Przyrodników Polskich we Lwowie, Lwów, 57.Google Scholar
Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., Ribolini, A., 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers and Geosciences 82, 5562.CrossRefGoogle Scholar
Pinto, J.G., Ludwig, P., 2020. Extratropical cyclones over the North Atlantic and western Europe during the last glacial maximum and implications for proxy interpretation. Climate of the Past, https://doi.org/10.5194/cp-2019-139CrossRefGoogle Scholar
Popescu, R., Urdea, P., Vespremeanu-Stroe, A., 2017. Deglaciation history of high massifs from the Romanian Carpathians: towards an integrated view. In: Rădoane and, M. Vespremeanu-Stroe, A. (eds.), Landform Dynamics and Evolution in Romania. Springer Geography 5. Springer, Cham, Switzerland, pp. 87116.CrossRefGoogle Scholar
Porter, S.C., 1975. Equilibrium-line altitudes of late Quaternary glaciers in the southern Alps, New Zealand. Quaternary Research 5, 2747.CrossRefGoogle Scholar
Rea, B.R., 2009. Defining modern day area-altitude balance ratios (AABRs) and their use in glacier-climate reconstructions. Quaternary Science Reviews 28, 237248.CrossRefGoogle Scholar
Rousseau, D.D., Svensson, A., Bigler, M., Sima, A., Peder, J., Steffensen, J.P., Boers, N., 2017. Eurasian contribution to the last glacial dust cycle: how are loess sequences built? Climate of the Past 13(9):11811197CrossRefGoogle Scholar
Różycki, S., 1967. Le sens des vents portant la poussière de loess, à la lumière de l'analyse des formes d'accumulation du loess en Bulgarie et en Europe centrale. Revue de Géomorphologie dynamique 17, 19.Google Scholar
Ruszkiczay-Rüdiger, Z., Kern, Z., Urdea, P., Braucher, R., Balazs, M., Schimmelpfennig, I., Team, Aster, 2016. Revised deglaciation history of the Pietrele-Stanisoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quaternary International 415, 20162029.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Z., Madarász, B., Kern, Z., Urdea, P., Braucher, R., Team, Aster, 2017. Late Pleistocene deglaciation and paleo-environment in the Retezat Mountains, Southern Carpathians. Geophysical Research Abstracts 19, 2755.Google Scholar
Ruszkiczay-Rüdiger, Zs., Fodor, L.I., Horváth, E., 2007. Neotectonics and Quaternary landscape evolution of the Gödöllo Hills, central Pannonian Basin, Hungary. Global and Planetary Change 58, 181196.CrossRefGoogle Scholar
Sánchez, S.J., Mosquera, D.F., Vidal Romaní, J.R., 2009. Assessing the age-weathering correspondence of cosmogenic 21Ne dated Pleistocene surfaces by the Schmidt hammer. Earth Surface Processes and Landforms 34, 11211125.CrossRefGoogle Scholar
Sawicki, L., 1911. Die glazialen Züge der Rodner Alpen und Marmaroscher Karpathen. Mitteilungen der Kaiserlich-Königlichen Geographische Gesellschaft 54, 1011, 510–571.Google Scholar
Schaffernicht, E.J., Ludwig, P., Shao, Y., 2020. Linkage between dust cycle and loess of the last glacial maximum in Europe. Atmospheric Chemistry and Physics doi:10.5194/acp-2019-693CrossRefGoogle Scholar
Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., Ustaszewski, K., 2008. The Alps-Carpathian- Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences 101, 139183.CrossRefGoogle Scholar
Shakesby, R.A., Matthews, J.A., Owen, G., 2006. The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quaternary Science Reviews 25, 28462867.CrossRefGoogle Scholar
Sima, A., Kageyama, M., Rousseau, D.-D., Ramstein, G., Balkanski, Y., Antoine, P., Hatté, C., 2013, Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits. Climate of the Past 9, 13851402.CrossRefGoogle Scholar
Sîrcu, I., 1978. Muntii Rodnei. Studiu morfogeografic. Editura Academiei R.S, România, Bucureşti, pp. 112.Google Scholar
Strandberg, G., Brandefelt, J., Kjellström, E., Smith, B., 2011. High resolution regional simulation of last glacial maximum climate in Europe. Tellus 63A, 107125.CrossRefGoogle Scholar
Sümegi, P., Magyari, E., Dániel, P., Molnár, M., Tőrőcsik, T., 2013. Responses of terrestrial ecosystems to Dansgaard-Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quaternary International 293, 3450.CrossRefGoogle Scholar
Sumner, P., Nel, W., 2002. The effect of rock moisture on Schmidt hammer rebound: tests on rock samples from Marion Island and South Africa. Earth Surface Processes and Landforms 27, 11371142.CrossRefGoogle Scholar
Szilády, Z., 1907. A Nagy-Pietrosz czirkus-völgyei. Földrajzi Közlemények 35, 68.Google Scholar
Temovski, M., Madarász, B., Kern, Z., Milevski, I., Ruszkiczay-Rüdiger, Z., 2018. Glacial geomorphology and preliminary glacier recosnstruction in the Jablanica Mountain, Macedonia, central Balkan peninsula. Geosciences 8, 270.CrossRefGoogle Scholar
Tischler, M., Gröger, H.R., Fügenschuh, B. Schmid, S.M., 2007. Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone. International Journal of Earth Sciences 96, 473496.CrossRefGoogle Scholar
Tomkins, M.D., Dortch, J.M., Hughes, P.D., Huck, J.J., Stimson, A.G., Delmas, M., Calvet, M., Pallàs, R., 2018. Rapid age assessment of glacial landforms in the Pyrenees using Schmidt hammer exposure dating (SHED). Quaternary Research 90, 2637.CrossRefGoogle Scholar
Tufescu, V., 1940. Contributini la glaciatiunea din Munti Rodnei, Revista geografica romana, 3, 1, 6272.Google Scholar
Tylman, K., Woźniak, P.P., Rinterknecht, V.R., 2018. Erratics selection for cosmogenic nuclide exposure dating – an optimization approach. Baltica 31, 100114.CrossRefGoogle Scholar
Újvári, G., Stevens, T., Molnár, M., Demény, A., Lambert, F., Varga, G., Jull, A. T., et al. ., 2017. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proceedings of the National Academy of Sciences USA 114, E10632E10638.CrossRefGoogle ScholarPubMed
Urdea, P., 2004. The Pleistocene glaciation of the Romanian Carpathians. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations: Extent and Chronology. Part 1, Europe. Elsevier, Amsterdam, pp. 301308.CrossRefGoogle Scholar
Urdea, P., Onaca, A., Ardelean, F., Ardelean, M., 2011. New evidence on the Quaternary glaciation in the Romanian Carpathians. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations: Extent and Chronology. Developments in Quaternary Science. Elsevier, Amsterdam, pp. 305322.CrossRefGoogle Scholar
Van Huissteden, J., Pollard, D., 2003. Oxygen isotope 3 fluvial and eolian successions in Europe compared with climate models. Quaternary Research 59, 2, 223233.CrossRefGoogle Scholar
Varga, L., 1927. A Radnai havasok keleti felének glaciális jelenségei. Földrajzi Közlemények 55, 46.Google Scholar
Viles, H., Goudie, A., Grab, S., Lalley, J., 2011. The use of the Schmidt hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surface Processes and Landforms 36, 320333.CrossRefGoogle Scholar
Winkler, S. 2009. First attempt to combine terrestrial cosmogenic nuclide (10Be and Schmidt hammer relative-age dating: Strauchon Glacier, southern Alps, New Zealand. Central European Journal of Geosciences 1, 274290.Google Scholar
Winkler, S., Matthews, J.A., 2014. Comparison of electronic and mechanical Schmidt hammers in the context of exposure-age dating: are Q- and R-values interconvertible? Earth Surface Processes and Landforms 39, 11281136.CrossRefGoogle Scholar
Zasadni, J., Kłapyta, P., 2014. The Tatra Mountains during the last glacial maximum. Journal of Maps 10, 440456.CrossRefGoogle Scholar
Zasadni, J., Kłapyta, P., 2016. From valley to marginal glaciation in alpine-type relief: late glacial glacier advances in the Pieć Stawów Polskich/Roztoka Valley, High Tatra Mountains, Poland. Geomorphology 253, 406424.CrossRefGoogle Scholar
Zasadni, J., Kłapyta, P., Broś, E., Ivy-Ochs, S., Świąder, A., Christl, M., Balážovičová, L., 2020. Latest Pleistocene glacier advances and post-Younger Dryas rock glacier stabilization in the Mt. Kriváň group, High Tatra Mountains, Slovakia. Geomorphology 358. 107093.CrossRefGoogle Scholar
Zasadni, J., Kłapyta, P., Świąder, A., 2018. Predominant western moisture transport to the Tatra Mountains during the last glacial maximum, inferred from glacier palaeo-ELAs. XXI International Congress of the CBGA, Salzburg, Austria, September 10–13, 2018, Abstract 237.Google Scholar
Supplementary material: File

Kłapyta et al. supplementary material

Kłapyta et al. supplementary material 1

Download Kłapyta et al. supplementary material(File)
File 13.7 KB
Supplementary material: PDF

Kłapyta et al. supplementary material

Kłapyta et al. supplementary material 2

Download Kłapyta et al. supplementary material(PDF)
PDF 901.7 KB
Supplementary material: File

Kłapyta et al. supplementary material

Kłapyta et al. supplementary material 3

Download Kłapyta et al. supplementary material(File)
File 556.8 KB
Supplementary material: File

Kłapyta et al. supplementary material

Kłapyta et al. supplementary material 4

Download Kłapyta et al. supplementary material(File)
File 376.4 KB