Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T19:20:58.640Z Has data issue: false hasContentIssue false

The First Dated Eemian Lacustrine Deposit in Romania

Published online by Cambridge University Press:  20 January 2017

Bogdan Petroniu Onac
Affiliation:
Group for Quaternary Research, Department of Mineralogy, Babes-Bolyai University, Kogalniceanu 1, Cluj, 3400, Romania, E-mail: [email protected]
Leif Björkman
Affiliation:
Department of Quaternary Geology, Lund University, Tornavägen 13, Lund, S-223-63, Sweden
Svante Björck
Affiliation:
Department of Quaternary Geology, Lund University, Tornavägen 13, Lund, S-223-63, Sweden
Octavian Clichici
Affiliation:
Department of Geology, Babes-Bolyai University, Kogalniceanu 1, Cluj, 3400, Romania
Tudor Tamas
Affiliation:
Group for Quaternary Research, Department of Mineralogy, Babes-Bolyai University, Kogalniceanu 1, Cluj, 3400, Romania
David Peate
Affiliation:
Danish Lithosphere Center, Øster Voldgade 10 L, Copenhagen, DK-1350, Denmark
Barbara Wohlfarth
Affiliation:
Department of Quaternary Geology, Lund University, Tornavägen 13, Lund, S-223-63, Sweden

Abstract

A complex interglacial sequence of lacustrine sediments has been found near the village of Turbuta in NW Romania. Mollusk, plant macrofossil, and pollen analyses reflect climatic and environmental changes around the last interglacial climatic optimum. U-Th TIMS dating of snails strongly indicates an Eemian age of the organic sediments.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrowicz, S.W. (1997). Malacofauna of the Eemian interglacial in Kochanów (middle Poland). Biuletyn Peryglacjalny 36, 1120.Google Scholar
Causse, C., Coque, R., Fontes, J.Ch., Gasse, F., Gibert, E., Ben Ouezdou, H., and Zouari, K. (1989). Two high levels of continental waters in the southern Tunisian chotts at about 90 and 150 ka. Geology 17, 922925.Google Scholar
Clichici, O., Ghiurca, V., and Dragos, I. (1976). Studiul paleocarpologic al depozitelor cuaternare din sectorul Valea Mare—Turbuta, judetul Salaj. Studia Universitatis Babes-Bolyai, Geologia-Mineralogie 2840.Google Scholar
Clichici, O., Dragos, I., and Ghiurca, V. (1979). Asociatia molustelor cuaternare din sectorul Valea Mare—Turbuta, judetul Salaj. Studia Universitatis Babes-Bolyai, Geologia-Geographia 1, 3246.Google Scholar
Diaconeasa, B., Clichici, O., and Dragos, I. (1976). Quelques renseignements sporopolliniques concernant le passé de la vegetation Quaternaire de Transylvanie. Contributii Botanice 193196.Google Scholar
Goodfriend, G.A. (1992). The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11, 665685.CrossRefGoogle Scholar
Israelson, C., Björck, S., Hawkesworth, C.J., and Possnert, G. (1997). Direct U-Th dating of organic- and carbonate-rich lake sediments from southern Scandinavia. Earth and Planetary Science Letters 153, 251263.Google Scholar
Kaufman, A., Broecker, W.S., Ku, T.L., and Thurber, D.L. (1971). The status of U-series methods of mollusk dating. Geochimica and Cosmochimica Acta 35, 563571.Google Scholar
Lally, A.E. Chemical procedure. Ivanovich, M., and Harmon, R.S. (1992). Uranium-series disequilibrium. Applications to Earth, Marine, and Environmental Sciences. Oxford Univ. Press, London. 95126.Google Scholar
Lauritzen, S.E., and Onac, B.P. (1999). Isotopic stratigraphy of a last interglacial stalagmite from northwestern Romania: Correlation with deep-sea record and northern-latitude speleothem. Journal of Cave and Karst Studies 61, 2230.Google Scholar
Lowe, J.J., and Walker, M.J.C. (1997). Reconstructing Quarternary Environments. Longman, Edinburg.Google Scholar
Meszaros, N., and Moisescu, V. (1991). Bref aperçu des unites lithostratigraphiques du paleogene dans le Nord-Ouest de la Transylvanie (region Cluj-Huedin). Bulletin d'Information des Géologues du Bassin de Paris 28, 3139.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. (1991). Pollen analysis. Blackwell Sci, Oxford.Google Scholar
Nilsson, T. (1983). The Pleistocene. Geology and life during the Quaternary Ice Age. Reidel, Dordrecht.Google Scholar
Onac, B.P., and Lauritzen, S.E. (1996). The climate of the last 150,000 years recorded in speleothems: Preliminary results from north-western Romania. Theoretical and Applied Karstology 9, 921.Google Scholar
Reille, M. (1992). Pollen et spores d'Europe et d'Afrique du nord. Louis-Jean, Gap.Google Scholar
Schwarcz, H.P., and Blackwell, B. Archaeological applications. Ivanovich, M., and Harmon, R.S. (1992). Uranium-series disequilibrium. Applications to Earth, Marine, and Environmental Sciences. Oxford Univ. Press, London. 513552.Google Scholar
Tamas, T., Causse, C., Blamart, D., Grafenstein, U., and Ghergari, L. U-Th TIMS dating and stable isotopes analyses on speleothems from V11 Cave (Bihor Mountains, NW Romania). Onac, B.P. (2000). Proceedings of the Symposium Quaternary Studies in Romania. 1719.Google Scholar
Zagwijn, W.H. (1996). An analysis of Eemian climate in Western and Central Europe. Quaternary Science Reviews 15, 451469.Google Scholar