Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T15:17:36.426Z Has data issue: false hasContentIssue false

The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records

Published online by Cambridge University Press:  20 January 2017

Luiz Carlos Ruiz Pessenda*
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), 13400-000, Piracicaba/SP, Brazil
Paulo Eduardo De Oliveira
Affiliation:
University of Guarulhos (UNG), Guarulhos/SP, Brazil
Milene Mofatto
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), 13400-000, Piracicaba/SP, Brazil
Vanda Brito de Medeiros
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), 13400-000, Piracicaba/SP, Brazil University of Guarulhos (UNG), Guarulhos/SP, Brazil
Ricardo José Francischetti Garcia
Affiliation:
Herbário da Prefeitura Municipal de São Paulo, São Paulo/SP, Brazil
Ramon Aravena
Affiliation:
University of Waterloo, Waterloo, Ontario, Canada N2L3G1
José Albertino Bendassoli
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), 13400-000, Piracicaba/SP, Brazil
Acácio Zuniga Leite
Affiliation:
Center for Nuclear Energy in Agriculture (CENA), 13400-000, Piracicaba/SP, Brazil
Antonio Roberto Saad
Affiliation:
University of Guarulhos (UNG), Guarulhos/SP, Brazil
Mario Lincoln Etchebehere
Affiliation:
University of Guarulhos (UNG), Guarulhos/SP, Brazil
*
*Corresponding author. Email Address:[email protected]

Abstract

The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to ∼ 22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from ∼ 28,000 to ∼ 19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from ∼ 19,450 to ∼ 19,000 14C yr BP indicates increasing humidity, associated to an erosion process between ∼ 19,000 and ∼ 15,600 14C yr BP. From ∼ 15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From ∼ 19,000 to ∼ 1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auler, A.S., and Smart, P.L. Late Quaternary paleoclimate in semi-arid northeastern Brazil from U-series dating of travertine and water table speleothems. Quaternary Research 55, (2001). 159167.Google Scholar
Barberi, M. Mudanças paleoambientais na região dos cerrados do planalto central durante o Quaternário tardio: O estudo da Lagoa Bonita. DF. São Paulo. (2001). Tese (Doutorado) – Instituto de Geociências, Universidade de São Paulo. 210 Google Scholar
Behling, H. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14, (1995). 253268.Google Scholar
Behling, H. Late Quaternary vegetation, fire and climate dynamics of Serra do Araçatuba in the Atlantic coastal mountains of Paraná State, southern Brazil. Vegetation History and Archaeobotany 16, (2007). 7785.CrossRefGoogle Scholar
Behling, H., and Lichte, M. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research 48, (1997). 348358.CrossRefGoogle Scholar
Behling, H., Lichte, M., and Miklos, A.W. Evidence of a forest free landscape under dry and cold climatic conditions during the last glacial maximum in Botucatu region (São Paulo State), southeastern Brazil. Quaternary of South America and Antarctic Peninsula 11, (1998). 99110.Google Scholar
Behling, H., Dupont, L., Safford, H.D., and Wefer, G. Late Quaternary vegetation and climate dynamics in the Serra da Boaina, southeastern Brazil. Quaternary International 161, (2007). 2231.CrossRefGoogle Scholar
Boutton, T.W. Stable carbon isotope of soil organic matter and their use as indicators of vegetation and climatic change. Boutton, T.W., and Yamasaki, S.I. Mass Spectrometry of Soils. (1996). Marcel Dekker, New York. 4782.Google Scholar
Bush, M.B., De Oliveira, P.E., Colinvaux, P.A., Miller, M.C., and Moreno, J.E. Amazonian paleocological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, (2004). 359393.CrossRefGoogle Scholar
Colinvaux, P., and De Oliveira, P.E. Amazon Pollen Manual and Atlas. (1999). Harwood Academic Publisher, Dordrecht. 332 Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., and Bush, M.B. A long pollen Record from lowland Amazônia: Forest and cooling in glacial times. Science 274, (1996). 8588.Google Scholar
Cruz, F.W. Jr., Burns, S.J., Karmann, I., Sharp, W.D., and Vuille, M. Reconstruction of regional atmospheric circulation features during the Late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters 248, (2006). 495507.Google Scholar
Cruz, F.W. Jr., Burns, S.J., Jercinovic, M., Sharp, W.D., Karmann, I., and Vuille, M. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71, (2007). 22502263.Google Scholar
Dawson, A.G. Ice Age Earth. Late Quaternary Geology and Climate. (1992). Routledge, London and New York. 293 Google Scholar
De Oliveira, P.E., (1992). A Palynological record of Late Quaternary vegetation and climatic change in Southeastern Brazil. PhD Thesis. The Ohio State University, Columbus, OH.Google Scholar
De Oliveira, P.E., Behling, H., Ledru, M.-P., Barberi, M., Bush, M., Salgado-Labouriau, M.L., Garcia, M.J., Medeanic, S., Barth, O.M., Barros, M., and Scheel-Ybert, R. Paleovegetação e Paleoclimas do Quaternário do Brasil. Cap. Souza, C.R.G., Suguio, K., Oliveira, A.M.S., De Oliveira, P.E. Quaternário do Brasil. Ed. Holos, Ribeirão Preto 3, (2005). SP, Brazil. 5274.Google Scholar
Desjardins, T., Filho, A.C., Mariotto, A., Chauvel, A., and Girardin, C. Changes of the Forest-savannah boundary in Brazilian Amazonia during the Holocene as revealed by soil organic carbon isotope ratios. Oecologia 108, (1996). 749756.Google Scholar
Ferraz-Vicentini, K.R., (1993). Análise palinológica de uma vereda em Cromínia, GO. Brasília. 87p. Dissertação (Mestrado) – Departamento de Ecologia, Universidade de Brasília.Google Scholar
Ferraz-Vicentini, K.R., and Salgado-Labouriau, M.L. Palynological analysis of a palm swamp in central Brazil. Journal of South American Earth Sciences 9, (1996). 207219.Google Scholar
Freitas, H.A., Pessenda, L.C.R., Aravena, R., Gouveia, S.E.M., Ribeiro, A.S., and Boulet, R. Late Quaternary vegetation dynamics in the Southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55, (2001). 3946.Google Scholar
Garcia, R.J.F. Estudo Florístico dos campos alto-montanos e matas nebulares do Parque Estadual da Serra do Mar – Núcleo Curucutu, São Paulo, SP, Brasil.Tese (Doutorado) São Paulo. (2003). Instituto de Biociências, Universidade de São Paulo.Google Scholar
Garcia, R.J.F., and Pirani, J.R. Análise florística, ecológica e fitogeográfica do Núcleo Curucutu, Parque Estadual da Serra do Mar (São Paulo, SP), com ênfase nos campos junto à crista da Serra do Mar. Hoehnea 32, (2005). 148.Google Scholar
Garcia, M.J., DE Oliveira, P.E., DE Siqueira, E., and Fernades, R.S. A Holocene vegetational and climatic records from the Atlantic rainforest belt of coastal state of São Paulo, SE Brazil. Review of Paleobotany and Palinology, 131, 3–4 (2004). 181199.Google Scholar
Goodland, R., and Pollard, R. The Brazilian cerrado vegetation: a fertility gradient. Ecology 61, (1973). 219224.Google Scholar
Goddard, E.N., Trask, P.D., Ford, R.K., Rove, O.N., and Overbeck, R.M. Rock-Color Chart. (1984). Geologycal Society of America, USA.Google Scholar
Gouveia, S.E.M., Pessenda, L.C.R., Aravena, R., Boulet, R., Scheel-Ybert, R., Bendassoli, J.A., Ribeiro, A.S., and Freitas, H.A. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and Holocene in the southeast and centerwest regions of Brazil. Global and Planetary Change 33, (2002). 95106.Google Scholar
Grimm, E.C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Pergamon Journal 13, (1987). 1335.Google Scholar
Grimm, E.C. TILIA Software, Version 1.12. (1992). Illinois State University, Google Scholar
Haberle, S.G. Upper Quaternary vegetation and climate history of the Amazon Basin: correlating marine and terrestrial pollen records. Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program 155, (1997). Scientific Results, College Station. TX.. 381396.Google Scholar
Ledru, M.P. Late Quaternary and climatic changes in Central Brazil. Quaternary Research 39, (1993). 9098.Google Scholar
Ledru, M.P., Braga, P.I.S., Soubiès, F., Fournier, M., Martin, L., Suguio, K., and Turq, B. The last 50000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Paleogeography, Paleoclimatology, Paleoecology 123, (1996). 239257.Google Scholar
Ledru, M.P., Salgado-Labouriau, M.L., and Lorscheitter, M.L. Vegetation dynamics in southern and central Brazil during the last 10000 yr B.P. Review of Paleobotany and Palinology 99, (1998). 131142.Google Scholar
Lorscheitter, M.L. and Mattoso, I.J., (1995). Reconstituição paleoambiental da região dos Campos Gerais, Paraná, através da palinologia de sedimentos da Lagoa Dourada. In: CONGRESSO DA ASSOCIAÇÃO BRASILEIRA DE ESTUDOS DO QUATERNÁRIO, 5., Niterói, 1995. Niterói: UFF.Google Scholar
Martin, L. and Flexor, J.M., (1989). Vibro-testemunhador leve: construção, utilização e possibilidades. In: CONGRESSO DA ASSOCIAÇÃO BRASILEIRA DE ESTUDOS DO QUATERNÁRIO, 2., Rio de Janeiro, 1989. Rio de Janeiro: ABEQUA, 1989. 15p. (Publicação Especial, 1).Google Scholar
Meyers, P.A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Greay Lakes. Organic Geochemistry, 24, (2003). 261289.Google Scholar
Morellato, L.P.C., and Haddad, C.F.B. The Brazilian Atlantic Forest. Biotropica 32, (2000). 786792.Google Scholar
Neves, P.C.P., and Lorscheitter, M.L. Upper Quaternary palaeoenvironments in the northern coastal plain of Rio Grande do Sul, Brazil. Quaternary of South America and Antarctic Peninsula 9, (1995). 3967.Google Scholar
Oliveira-Filho, A.T., and Fontes, M.A.L. Patterns of floristic differentiation among Atlantic forests of southeastern Brazil and the influence of climate. Biotropica 32, (2000). 793810.Google Scholar
Oliveira, M.A.T., Behling, H., and Pessenda, L.C.R. Late-Pleistocene and mid-Holocene environmental changes in highland valley head areas of Santa Catarina State, Southern Brazil. Journal of South American Earth Sciences 26, (2008). 5567.CrossRefGoogle Scholar
Oliveira, M.A.T., Behling, H., Pessenda, L.C.R., and Leite de Lima, G. Stratigraphy of near-valley head Quaternary deposits and evidence of climate-driven slope channel processes in southern Brazilian highlands. Catena 175, (2008). 7782.Google Scholar
Palma, J.J.C. Geologia do Brasil. Ministério das Minas e Energia. (1984). DNPM, Brasília, DF. 501 Google Scholar
Pessenda, L.C.R., and Camargo, P.B. Datação radiocarbônica de amostras de interesse arqueológico e geológico por espectrometria de cintilação líquida de baixa radiação de fundo. Química Nova 14, (1991). 98103.Google Scholar
Pessenda, L.C.R., Aravena, R.M., and Melfi, A.J. The use of carbon isotopes (C-13, C-14) in soil to evaluate vegetation changes during the Holocene in central Brazil. Radiocarbon 38, (1996). 191201.CrossRefGoogle Scholar
Pessenda, L.C.R., Valencia, E.P.E., and Martinelli, L.A. 14C measurements in tropical soil developed on basic rocks. Radiocarbon 38, (1996). 203208.Google Scholar
Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., Gomes, B.M., Boulet, R., and Ribeiro, A.S. 14C dating and stable carbon isotopes of soil organic matter in Forest-savana boundary areas in Southern Brazilian Amazon Region. Radiocarbon 40, (1998). 10131022.Google Scholar
Pessenda, L.C.R., Gomes, B.M., Aravena, R., Ribeiro, A.S., Boulet, R., and Gouveia, S.E.M. The carbon isotope record in soil along a forest-serrado ecosystem transect: implication for vegetation changes in Rondônia state, southwestern Brazilian Amazon region. The Holocene 8, (1998). 631635.Google Scholar
Pessenda, L.C.R., Gouveia, S.E.M., and Aravena, R. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43, (2001). 595601.Google Scholar
Pessenda, L.C.R., Ribeiro, A.S., Gouveia, S.E.M., Aravena, R., Boulet, R., and Bendassoli, J.A. Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter. Quaternary Research 62, (2004). 183193.Google Scholar
Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., Boulet, R., and Valencia, E.P.E. Holocene fire and vegetation changes in southeastern Brazil as deduced from fossil charcoal and soil carbon isotopes. Quaternary International 114, (2004). 3543.CrossRefGoogle Scholar
Pessenda, L.C.R., Ledru, M.P., Gopuveia, S.E.M., Aravena, R., Ribeiro, A.S., Bendassolli, J.A., and Boulet, R. Holocene palaeoenviromental reconstruction in northeastern Brazil inferred from pollen, charcoal and carbon isotope records. The Holocene 15, 6 (2005). 812820.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Roth, L., and Lorscheitter, M.L. Palinology of a bog in Parque Nacional de Aparados da Serra, East Plateau of Rio Grande do Sul, Brazil. Quaternary of South America and Antarctic Península 8, (1993). 3969.Google Scholar
Saia, S.E.M.G., Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., and Bendassolli, J.A.B. Late glacial vegetation changes in the Atlantic Forest, southeastern Brazil. Quaternary Internacional 184, (2008). 195201.Google Scholar
Salgado-Labouriau, M.L. História Ecológica da Terra. (1994). EDUSP-Editora da Universidade de São Paulo, São Paulo.Google Scholar
Salgado-Labouriau, M.L., Barberi, M., Ferraz-Vicentini, K.R., and Parizzi, M.G. A dry climatic event during the late Quaternary of tropical Brazil. Review of Paleobotany and Palinology 99, (1998). 115129.Google Scholar
Serra, A.B., (1969). Atlas climatológico do Brasil. Rio de Janeiro: Ministério da Agricultura, Escritório Central de Planejamento e Controle – ECEPLAN.; Escritório de Meteorologia, 1v, .Google Scholar
Siqueira, E., (2006). História Ecológica da Floresta de Araucaria durante do Quaternario Tardio no setor sul da Serra da Mantiqueira: Análises Sedimentológicas e Palinológicas na região de Monte Verde (MG). MS Thesis. Institute of Geosciences. University of São Paulo, Brazil., 185 p.Google Scholar
Soil Survey Staff United States Department of Agriculture. Second Edition Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys 869, (1999). USDA, Washington. (Agriculture Handbook, 436) Google Scholar
Stevaux, J.C. The upper Paraná river (Brazil): geomorphology, sedimentology and paleoclimatology. Quaternary International 21, (1994). 143161.Google Scholar
Stevaux, J.C. Climatic events during the late Pleistocene and Holocene in the Upper Parana River: correlation with NE Argentina and South-Central Brazil. Quaternary International 72, (2000). 7385.Google Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, (1971). 615621.Google Scholar
Tarifa, A. Os climas “naturais”. Tarifa, J.R., Azevedo, T.R. Os climas na cidade de São Paulo – teoria e prática. Laboratório de Climatologia – FFLCH-USP 4, (2001). GEOSUSP, Coleção Novos Caminhos, São Paulo. 4770.Google Scholar
Wang, X.F., Auler, A.S., Edwards, R.L., Cheng, H., Cristali, P.S., Smart, P.L., Richards, D.A., and Shen, C.C. Wet periods in northeastern Brazil over the past 210kyr linked to distant climate anomalies. Nature 432, (2004). 740743.Google Scholar
Wang, X., Auler, A.S., Edwards, R.E., Cheng, H., Ito, E., and Solheid, M. Interhemispheric anti-phasing of rainfall during the last glacial period. Quaternary Science Reviews 25, (2006). 33913403.Google Scholar