Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:57:43.402Z Has data issue: false hasContentIssue false

Evidence for Holocene environmental changes in the northern Fertile Crescent provided by pedogenic carbonate coatings

Published online by Cambridge University Press:  20 January 2017

Konstantin Pustovoytov*
Affiliation:
Institut für Bodenkunde und Standortlehre, Universität Hohenheim, Emil-Woll-Str. 27, 70599, Stuttgart, Germany
Klaus Schmidt
Affiliation:
Deutsches Archäologisches Institut, Podbielskiallee 69-71, 14195 Berlin, Germany
Heinrich Taubald
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany
*
*Corresponding author. E-mail address:[email protected] (K. Pustovoytov).

Abstract

Holocene environmental changes in the northern Fertile Crescent remain poorly understood because of the scarcity of local proxy records in the region. In this study we investigated pedogenic (soil-formed) carbonate coatings on stones at the Pre-Pottery Neolithic site Göbekli Tepe as an indicator of local early-mid Holocene environmental changes. The 14C ages and stable isotopic composition of carbon and oxygen in thin (0.2–0.3 mm thick) pedogenic carbonate lamina indicate two main periods of coating formation: the early-Holocene (ca. 10000–6000 cal yr BP) and the mid-Holocene (ca. 6000–4000 cal yr BP). During the first period, there was an inverse relationship between δ13C and δ18O curves: a decrease in δ13C values coincide with an increase in δ18O values. For this period a trend towards higher temperatures is suggested. In the mid-Holocene, the mean rate of coating growth was 2–3 times higher than in the early Holocene. Both δ13C and δ18O reached their maximum values during this time and the direction of changes of the δ13C and δ18O curves became similar. The combination of data suggests that this period was the most humid in the Holocene and on average warmer than the early Holocene. At ca. 4000 cal yr BP secondary accumulation of carbonate ceased, presumably reflecting a shift to a more arid climate.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alex, M. Klimadaten ausgewählter Stationen des Vorderen Orients. Beihefte zum Tübinger Atlas des Vorderen Orients. Reihe A (Naturwissenschften) 4, (1985). 418 Google Scholar
Ambrose, S.H., and Sikes, N.E. Soil carbon evidence for Holocene habitat change in the Kenya Rift Valley. Science 253, (1991). 14021405.CrossRefGoogle ScholarPubMed
Araus, J.L., Febrero, A., Buxo, R., Rodriguez-Ariza, M.O., Molina, F., Camalich, M.D., Martin, D., and Voltas, J. Identification of ancient irrigation practices based on the carbon isotope discrimination of plant seeds: a case study from the south-east Iberian Peninsula. Journal of Archaeological Science 24, (1997). 729740.CrossRefGoogle Scholar
Amundson, R., Chadwick, O., Sowers, J., and Doner, H. The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Science Society of America Journal 53, (1989). 201210.CrossRefGoogle Scholar
Amundson, R., Wang, Y., Chadwick, O., Trumbore, S., McFadden, L., McDonald, E., Wells, S., and DeNiro, M. Factors and processes governing the 14C content of carbonate in desert soils. Earth and Planetary Science Letters 125, (1994). 385405.CrossRefGoogle Scholar
Amundson, R., Chadwick, O., Kendall, C., Wang, Y., and DeNiro, M. Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid-North America. Geology 24, (1996). 2326.2.3.CO;2>CrossRefGoogle Scholar
Aurenche, O., Galet, P., Régagnon-Caroline, E., and Évin, J. Proto-Neolithic and Neolithic in the cultures in the Middle East—the birth of agriculture, livestock raising, and ceramics: a calibrated 14C chronology 12500–5500 cal BC. Radiocarbon 43, 3 (2001). 11911202.CrossRefGoogle Scholar
Bar-Matthews, M., and Kaufman, A. Middle to Late Holocene (6.500 yr. period) paleoclimate in the eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. Issar, A.S., and Brown, N. Water, Environment and Society in Times of Climatic Change. (1998). Kluver Academic Publishers, Dordrech, Boston. 203214.Google Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Sorq Cave, Israel. Quaternary Research 47, (1997). 155168.CrossRefGoogle Scholar
Birkeland, P. Soils and Geomorphology. (1999). Oxford Univ. Press, New York.Google Scholar
Bottema, S. The younger Dryas in the Eastern Mediterranean. Quaternary Science Reviews 14, (1995). 883891.CrossRefGoogle Scholar
Braidwood, R.J., and Howe, B. Prehistoric investigations in Iraqi Kurdistan. Studies in Ancient Oriental Civilization 31, (1960). University of Chicago Press, Chicago.Google Scholar
Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., and Tursina, T. Handbook for Soil Thin Section Description. (1985). Waine Research, Wolverhampton, UK.Google Scholar
Buck, B.J., and Monger, H.C. Stable isotopes and soil-geomorphology as indicators of Holocene climate change, northern Chihuahuan Desert. Journal of Arid Environments 43, (1999). 357373.CrossRefGoogle Scholar
Cerling, T. The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, (1984). 229240.CrossRefGoogle Scholar
Cerling, T. Carbon dioxide in the atmosphere: evidence from cenozoic and mesozoic paleosols. American Journal of Science 291, (1991). 377400.CrossRefGoogle Scholar
Cerling, T., and Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Climate change in continental isotopic records. Geophysical Monograph 78, (1993). 217231.Google Scholar
Cerling, T., Quade, J., Wang, Y., and Bowman, J.R. Carbon isotopes in soils and paleosoils as ecology and paleoecology indicators. Nature 341, (1989). 138139.CrossRefGoogle Scholar
Childe, V.G. New Light on the Most Ancient East. (1952). Praeger, New York.Google Scholar
Courty, M.-A., Goldberg, P., and McPhail, R.I. Soils and micromorphology in archaeology. Cambridge Manuals in Archaeology. (1989). Cambridge Univ. Press, Cambridge.Google Scholar
Courty, M.-A., Marlin, C., Dever, L., Tremblay, P., and Vachier, P. The properties, genesis and environmental significance of calcitic pendents from the high arctic (Spitsbergen). Geoderma 61, (1994). 71102.CrossRefGoogle Scholar
Courty, M.-A., Crisci, A., Fedoroff, N., Greenwood, P., Grice, K., Leroy, E., Mermoux, M., Pastol, J.L., Smith, D., and Thiemens, M. Consequences on humans, lands and climate of the 4-kyr BP impact across the Near East. The General Assembly of European Geosciences Union, Vienna, 24–29 April 2005 (2005). Abstract EGU05-A-04746 Google Scholar
Cullen, H.M., deMenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T., and Sirocko, F. Climate change and the collapse of the Akkadian empire: evidence from the dead sea. Geology 28, 4 (2000). 379382.2.0.CO;2>CrossRefGoogle Scholar
Deutz, P., Montanez, I.P., Monger, H.C., and Morrison, J. Morphology and isotope heterogeneity of Late Quaternary pedogenic carbonates: implications for paleosol carbonates as paleoenvironmental proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 166, (2001). 293317.CrossRefGoogle Scholar
Ferrio, J.P., Florit, A., Vega, A., Serrano, L., and Voltas, J. Δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis . Oecologia 442, (2003). 512518.CrossRefGoogle Scholar
Fontugne, M., Kuzucuoðlu, C., Hatté, C., and Pastre, J.-F. From Pleniglacial to Holocene: in the Konya Plain, Turkey. Quaternary Science Reviews 18, (1999). 573591.CrossRefGoogle Scholar
Frumkin, A., and Elitzur, Y. Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quaternary Research 57, (2002). 334342.CrossRefGoogle Scholar
Frumkin, A., Ford, D.C., and Schwarcz, H. Continental oxygen isotopic record of the last 170.000 years in Jerusalem. Quaternary Research 51, (1999). 317327.CrossRefGoogle Scholar
Gat, J.R. Oxygen and hydrogen isotopes in the hydrological cycle. Annual Review of Earth and Planetary Sciences 24, (1996). 225262.CrossRefGoogle Scholar
Goldberg, P. Interpreting Late Quaternary continental sequences in Israel. Bar-Yosef, O., and Kra, R.S. Late Quaternary Chronology and Paleoclimates of the Eatsern Mediterranean. Tucson, Radiocarbon. (1994). 89102.Google Scholar
Goodfriend, G.A. Terrestrial stable isotope record of Late Quaternary paleoclimates in the eastern Mediterranean region. Quaternary Science Reviews 18, (1999). 501513.CrossRefGoogle Scholar
Guidelines for Soil Profile Description, 1990. Third edition (revised). Soil Resources, Management, and Conservation Service, Land and Water Development Division, . Rome: FAO.Google Scholar
Heun, M., Schäfer-Bregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., and Salamini, F. Site of einkorn domestication identified by DNA fingerprinting. Science 278, (1997). 13121314.CrossRefGoogle Scholar
Hsieh, J.C.C., Chadwick, O.A., Kelly, E.F., and Savin, S.M. Oxygen isotopic composition of soil water: quatifying evaporation and transpiration. Geoderma 82, (1998). 269293.CrossRefGoogle Scholar
Jiamao, H., Keppens, E., Tungsheng, L., Paepe, R., and Wenying, J. Stable isotope composition of the carbonate concretions in loess and climate change. Quaternary International 37, (1997). 3743.Google Scholar
Khokhlova, O.S., Khokhlov, A.A., Chichagova, O.A., and Morgunova, N.L. Radiocarbon dating of calcareous accumulations in soils of the Holocene chronosequence in the Ural river valley (Cis-Ural steppe). Eurasian Soil Science 37, 10 (2004). 10241038.Google Scholar
Körner, C., Farquhar, G.D., and Wong, S.C. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88, (1991). 3040.CrossRefGoogle ScholarPubMed
Kurapkat, D. (2004). Die frühneolithischen Bauanlagen auf dem Göbekli Tepe in Obermesopotamien (Südosttürkey). Bericht über die 42. Tagung für Ausgrabungswissenschaft und Bauforschung 2002 in München. Koldewey-Gesellschaft, . Stuttgart. 256267.Google Scholar
Liu, B., Philips, F.P., and Campbell, A.R. Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona: implications for paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology 124, (1996). 233246.CrossRefGoogle Scholar
Monger, H.C., Cole, D.R., Gish, J.W., and Giordano, T.H. Stable carbon and oxygen isotopes in Quaternary soil carbonates as indicators of ecogeomorphic changes in the northern Chihuahuan Desert, USA. Geoderma 82, (1998). 137172.CrossRefGoogle Scholar
Mora, G., and Pratt, L. Carbon isotopic evidence from paleosols for mixed C3/C4 vegetation in the Bogota Basin, Colombia. Quaternary Science Reviews 21, (2002). 985995.CrossRefGoogle Scholar
Neef, R. Overlooking the steppe-forest: a preliminary report on the botanical remains from Early Neolithic Göbekli Tepe (Southeastern Turkey). Neo-Lithics 2/03, (2003). 1316.Google Scholar
Nesbitt, M. When and where did domesticated cereals first occur in southwest Asia. Cappers, R.T.J., and Bottema, S. The Dawn of Farming in the Near East. Ex Oriente, Berlin. (2002). 113132.Google Scholar
Nordt, L., Wilding, L., Hallmark, C., and und Jacob, J. Stable carbon isotope composition of pedogenic carbonates and their use in studying pedogenesis. Boutton, T.W., and Yamasaki, S. Mass spectrometry of soils. Marcel Dekker, Inc., New York. (1996). 133154.Google Scholar
Pamir, H.N., and Erentöz, C. Geological Map of Turkey, 1:500000. Diyarbakir Sheet. MTA. Ankara. (1974). Google Scholar
Pendall, E., Harden, J., Trumbore, S., and Chadwick, O. Isotopic approach to soil carbonate dynamics and implications for paleoclimatic interpretations. Quaternary Research 42, (1994). 6071.CrossRefGoogle Scholar
Peters, J., and Schmidt, K. Animals in the symbolic world of Pre-Pottery Neolithic Göbekli Tepe, south-eastern Turkey: a preliminary assessment. Anthropozoologica 39, 1 (2004). 179218.Google Scholar
Pustovoytov, K. Pedogenic carbonate cutans on clasts in soils as a record of history of grassland ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 177, (2002). 199214.CrossRefGoogle Scholar
Pustovoytov, K. Soils and soil sediments at Göbekli Tepe: a preliminary report. Geoarchaeology 21, 7 (2006). 699719.CrossRefGoogle Scholar
Pustovoytov, K., and Leisten, T. Diagenetic alteration of artificial lime mortar in a Mediterranean soil: 14C and stable carbon isotopic data. 17th World Congress of Soil Science, 14–21 August, Bangkok (2002). Google Scholar
Quade, J., Cerling, T., and Bowman, R. Systematic variations in the carbo and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin 101, (1989). 464475.2.3.CO;2>CrossRefGoogle Scholar
Ramsey, B.C. Development of the Radiocarbon Program OxCal. Radiocarbon 43, 2A (2001). 355363.CrossRefGoogle Scholar
Riehl, S., Bryson, R., in press. Variability in human adaptation to changing environmental conditions in Upper Mesopotamia during the Early and the Middle Bronze Age. Varia Anatolica, .Google Scholar
Roberts, N., Black, S., Boyer, P., Eastwood, W.J., Griffiths, H.I., Lamb, H.F., Leng, M.J., Parsih, R., Reed, J.M., Twigg, D., and Yiitbasioglu, H. Chronology and stratigraphy of Late Quaternary sediments in the Konya Basin, Turkey: results from the KOPAL Project. Quaternary Science Reviews 18, (1999). 611630.CrossRefGoogle Scholar
Roberts, N., Reed, J.M., Leng, M.J., Kuzucuoglu, C., Fonutugne, M., Bertaux, J., Woldring, H., Bottema, S., Black, S., Hunt, E., and Karabiyikoglu, M. The tempo of Holocene climatic change in the Eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11, 6 (2001). 721736.CrossRefGoogle Scholar
Robinson, S.A., Black, S., Sellwood, B.W., and Valdes, P.J. A review of palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000 to 5000 years BP: setting the environmental background for the evolution of human civilisation. Quaternary Science Reviews 25, (2006). 15171541.CrossRefGoogle Scholar
Rosen, A.M. The geoarchaeology of Holocene environments and land use at Kazane Höyük, SE Turkey. Geoarchaeology 12, 4 (1997). 395416.3.0.CO;2-W>CrossRefGoogle Scholar
Rossignol-Strick, M. The Holocene climatic optimum and pollen records of sapropel 1 in the eastern Mediterranean, 9000–6000 BP. Quaternary Science Reviews 18, (1999). 515530.CrossRefGoogle Scholar
Sage, R.F. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biology 3, (2001). 202213.CrossRefGoogle Scholar
Schleser, G.H., and Jajasekera, R. δ 13C-variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia 65, (1985). 536542.CrossRefGoogle ScholarPubMed
Schmidt, K. Göbekli Tepe, Southeastern Turkey. A preliminary report on the 1995–1999 excavations. Paléorient 26/1, (2001). 4554.Google Scholar
Schmidt, K. The 2002 excavations at Göbekli Tepe (Southeastern Turkey)—impressions from an enigmatic site. Neo-Lithics 2/02, (2002). 813.Google Scholar
Schmidt, K. The 2003 campaign at Göbekli Tepe (Southeastern Turkey). Neo-Lithics 2/03, (2003). 38.Google Scholar
Siegenthaler, U., and Matter, H.A. Dependence of δ 18O and δD in precipitation on climate. Palaeoclimate and palaeowaters. A Collection of Environmental Isotope Studies. IAEA (1983). 3751.Google Scholar
Snyder, J.A., Wasylik, K., Fritz, S., Wright, H.E. Jr. Diatom-based conductivity reconstruction and paleoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. The Holocene 11, 6 (2001). 737745.CrossRefGoogle Scholar
Spötl, C., and Vennemann, T. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17, (2003). 10041006.CrossRefGoogle ScholarPubMed
Stevens, J.A., Wright, H.E. Jr., and Ito, E. Proposed changes in seasonality of climate during the Late-glacial and Holocene at Lake Zeribar, Iran. The Holocene 11, 6 (2001). 745755.CrossRefGoogle Scholar
Straub, R., (1988). Bodengesellschaften des Vorderen Orients. Beihefte zum Tübinger Atlas des Vorderen Orients. Reihe A (Naturwissenschaften), Nr. 16. Wiesbaden: Dr. Ludwig Reichert, .Google Scholar
Tieszen, L.L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology and paleoecology. Journal of Archaeological Science 18, (1991). 227248.CrossRefGoogle Scholar
Van Zeist, W., Bottema, S., (1991). Late Quaternary vegetation of the Near East. Beihefte zum Tübinger Atlas des Vorderen Orients. Reihe A (Naturwissenschaften). Nr. 18. Dr. Ludwig Reichert Verlag, . Wiesbaden. 156 pp.Google Scholar
Wang, Y., Amundson, R., and Trumbore, S. A model of 14CO2 and its implications for using 14C to date pedogenic carbonate. Geochemistry Cosmochemistry Acta 58, (1994). 393399.Google Scholar
Wang, Y., McDonald, E., Amundson, R., McFadden, L., and Chadwick, O. An isotopic study of soils in chronological sequences of alluvial deposits, Providence Mountains, California. Geological Society of America Bulletin 108, (1996). 379391.2.3.CO;2>CrossRefGoogle Scholar
Warren, C.R., McGrath, J.F., and Adams, M.A. Water availability and carbon isotope discrimination in conifers. Oecologia 127, (2001). 476486.CrossRefGoogle ScholarPubMed
Weiss, H., Courty, M.-A., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R.A., and Curnow, A. The genesis and collapse of the third millennium north Mesopotamian civilization. Science 261, (1993). 9951004.CrossRefGoogle ScholarPubMed
Wick, L., Lemcke, G., and Sturm, M. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13, 5 (2003). 665675.CrossRefGoogle Scholar
Wilkinson, T.J. Holocene valley fills of southern Turkey and NW Syria: recent geoarchaeological contributions. Quaternary Science Reviews 18, (1999). 555572.CrossRefGoogle Scholar
Williams, D.G., and Ehleringer, J.R. Carbon isotope discrimination in three semi-arid woodland species along a monsoon gradient. Oecologia 106, (1996). 455460.CrossRefGoogle ScholarPubMed
World Reference Base for Soil Resources, (1998). FAO Report Nr 84. Rome: FAO, .Google Scholar
Yasuda, Y., Kitagawa, H., and Nakagawa, T. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. Quaternary International 73/74, (2000). 127136.CrossRefGoogle Scholar
Zohary, D., and Hopf, M. Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. third ed. Oxford University Press. Oxford, UK (2000). 278 Google Scholar