Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T21:05:24.926Z Has data issue: false hasContentIssue false

Estimating phytolith influx in lake sediments

Published online by Cambridge University Press:  20 January 2017

Julie C. Aleman*
Affiliation:
Centre for Bio-Archaeology and Ecology (UMR5059, CNRS/Université Montpellier 2/EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Paleoenvironments and Chronoecology (PALECO), Ecole Pratique des Hautes Etudes (EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France UR Biens et services des écosystèmes forestiers tropicaux (CIRAD), Montpellier, France
Audrey Saint-Jean
Affiliation:
Centre for Bio-Archaeology and Ecology (UMR5059, CNRS/Université Montpellier 2/EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Paleoenvironments and Chronoecology (PALECO), Ecole Pratique des Hautes Etudes (EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
Bérangère Leys
Affiliation:
Centre for Bio-Archaeology and Ecology (UMR5059, CNRS/Université Montpellier 2/EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Paleoenvironments and Chronoecology (PALECO), Ecole Pratique des Hautes Etudes (EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
Christopher Carcaillet
Affiliation:
Centre for Bio-Archaeology and Ecology (UMR5059, CNRS/Université Montpellier 2/EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Paleoenvironments and Chronoecology (PALECO), Ecole Pratique des Hautes Etudes (EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
Charly Favier
Affiliation:
Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS/Université Montpellier 2), F-34095 Montpellier, France
Laurent Bremond
Affiliation:
Centre for Bio-Archaeology and Ecology (UMR5059, CNRS/Université Montpellier 2/EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Paleoenvironments and Chronoecology (PALECO), Ecole Pratique des Hautes Etudes (EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
*
*Corresponding author at: Centre for Bio-Archaeology and Ecology (UMR5059, CNRS/Université Montpellier 2/EPHE), Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France. E-mail address:[email protected] (J.C. Aleman).

Abstract

So far, no phytolith extraction protocols have been tested for accuracy and repeatability. Here we aim to display a phytolith extraction method combining the strengths of two widely used protocols, supplemented with silica microspheres as exogenous markers for quantifying phytolith concentrations. Phytolith concentrations were estimated for samples from two sedimentary sequences in which numerical age–depth models make it possible to calculate phytolith influxes (phytolith numbers per cm2per yr). Analysis of replicates confirmed the statistical robustness, the repeatability and the very few biases of our extraction technique for small phytoliths, since the relationship between grass silica short cells and microspheres was kept stable. Furthermore, we demonstrated that silica microspheres are robust exogenous markers for estimating phytolith concentrations. The minimum number of items (i.e., phytoliths plus silica microspheres) that must be counted to estimate phytolith concentrations and thus influxes depends on the ratio of phytoliths to microspheres (R) and is minimized when R = 1. Nevertheless, we recommend using ratios R ≤ 1 in order to avoid having the counting process become excessively time-consuming, because microspheres are easier to identify and count than phytoliths.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, F., (2003). A 340,000 from the equatorial Atlantic. Earth and Planetary Science Letters 209, year continental climate record from tropical Africa—news from opal phytoliths 165179.Google Scholar
Aleman, J., Leys, B., Apema, R., Bentaleb, I., Dubois, M.A., Lamba, B., Lebamba, J., Martin, C., Ngomanda, A., Truc, L., Yangakola, J.-M., Favier, C., Bremond, L., (2012). Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes. Journal of Vegetation Science 23, 187197.Google Scholar
Battarbee, R., Kneen, M., (1982). The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 184–188.Google Scholar
Benninghoff, W.S., (1962). Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et Spores 4, 332333.Google Scholar
Birks, H., (1996). Achievements, developments, and future challenges in quantitative Quaternary Palaeoecology. INQUA-Commision for the Study of Holocene—Sub-Commission on Data-Handling Methods Newsletter 14, 28.Google Scholar
Blaauw, M., (2010). Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Blarquez, O., Carcaillet, C., Elzein, T.M., Roiron, P., (2012). Needle accumulation rate model-based reconstruction of palaeo-tree biomass in the western subalpine Alps. The Holocene 22, 579587.Google Scholar
Brown, A., (1988). The palaeoecology of Alnus (alder) and the Postglacial history of floodplain vegetation. Pollen percentage and influx data from the West Midlands, United Kingdom. New Phytologist 110, 425436.Google Scholar
Gil, I.M., Abrantes, F., Hebbeln, D., (2006). The North Atlantic Oscillation forcing through the last 2000 years: spatial variability as revealed by high-resolution marine diatom records from N and SW Europe. Marine Micropaleontology 60, 113129.Google Scholar
Hill, T.R., (1996). Statistical determination of sample size and contemporary pollen counts, Natal Drakensberg, South Africa. Grana 35, 119124.Google Scholar
Hyvärinen, H., (1976). Flandrian pollen deposition rates and tree-line history in northern Fennoscandia. Boreas 5, 163175.Google Scholar
Jones, R.L., Beavers, A., (1963). Some mineralogical and chemical properties of plant opal. Soil Science 96, 375379.CrossRefGoogle Scholar
Kelly, E., (1990). Method for extracting opal phytoliths from soil and plant material. Intern. Rep., Dep. Agron. Colorado State Univ., Fort Collins.Google Scholar
Lentfer, C., Boyd, W.E., (1998). A comparison of three methods for the extraction of phytoliths from sediments. Journal of Archaeological Science 25, 11591183.Google Scholar
Leys, B., Carcaillet, C., Dezileau, L., Ali, A.A., Bradshaw, R.H., (2013). A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quaternary Research 79, 337349.Google Scholar
Madella, M., Powers-Jones, A.H., Jones, M.K., (1998). A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. Journal of Archaeological Science 25, 801803.Google Scholar
Madella, M., Alexandre, A., Ball, T., (2005). International code for phytolith nomenclature 1.0. Annals of Botany 96, 253260.CrossRefGoogle ScholarPubMed
Mulholland, S.C., Rapp jr., G., (1992). A morphological classification of grass silica-bodies. Rapp jr., G., Mulholland, S.C. Phytoliths Systematics: Emerging Issues. Advances in Archaeological and Museum Science Plenum Press, New York.6589.Google Scholar
Pearsall, D.M., (2000). Paleoethnobotany: A Handbook of Procedures. Second edition Academic Press, San Diego.Google Scholar
Piperno, D., (1993). Phytolith and charcoal records from deep lake cores in the American tropics. MASCA Research Papers in Science and Archaeology 10, 5971.Google Scholar
Piperno, D.R., (1995). Plant microfossils and their application in the New World tropics. Stahl, P. Archaeology in the Lowland American Tropic. En Current Analytical Methods and Recent Applications 130153.Google Scholar
Piperno, D., (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Altamira Pr., .Google Scholar
Powers, A.H., Gilbertson, D.D., (1987). A simple preparation technique for the study of opal phytoliths from archaeological and Quaternary sediments. Journal of Archaeological Science 14, 529535.Google Scholar
Powers-Jones, A., Padmore, J., (1993). The use of quantitative methods and statistical analyses in the study of opal phytoliths. MASCA Research Papers in Science and Archaeology 10, 4756.Google Scholar
Reimer, P.J., Baillie, M.G., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0"50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Salgado-Labouriau, M.L., Rull, V., (1986). A method of introducing exotic pollen for paleoecological analysis of sediments. Review of Palaeobotany and Palynology 47, 97103.Google Scholar
Scherer, R.P., (1994). A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology 12, 171179.Google Scholar
Seppä, H., Hicks, S., (2006). Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quaternary Science Reviews 25, 15011516.Google Scholar
Seppä, H., Nyman, M., Korhola, A., Weckström, J., (2002). Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records. Journal of Quaternary Science 17, 287301.Google Scholar
Stefanova, I., Ammann, B., (2003). Late glacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). The Holocene 13, 97107.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stromberg, C.A.E., (2009). Methodological concerns for analysis of phytolith assemblages: does count size matter?. Quaternary International 193, 124140.Google Scholar
Wolfe, A.P., (1997). On diatom concentrations in lake sediments: results from an inter-laboratory comparison and other tests performed on a uniform sample. Journal of Paleolimnology 18, 261268.Google Scholar
Supplementary material: File

Aleman et al. Supplementary Material

Supplementary Material

Download Aleman et al. Supplementary Material(File)
File 126.3 KB