Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T07:07:29.098Z Has data issue: false hasContentIssue false

El Niño Variability in the Coastal Desert of Southern Peru during the Mid-Holocene

Published online by Cambridge University Press:  20 January 2017

Michel Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572-CEA/CNRS, Domaine du CNRS, F-91198, Gif sur Yvette cedex, France. E-mail: [email protected]
Pierre Usselmann
Affiliation:
UMR 5651 Espace, Maison de la Géographie, 17 rue de l'Abbé de l'Epée, F-34090, Montpellier, France
Danièle Lavallée
Affiliation:
Archéologie des Amériques, CNRS, Maison de l'Archéologie et de l'Ethnogie, 21 Allée de l'Université, F-92023, Nanterre Cedex, France
Michèle Julien
Affiliation:
Archéologie des Amériques, CNRS, Maison de l'Archéologie et de l'Ethnogie, 21 Allée de l'Université, F-92023, Nanterre Cedex, France
Christine Hatté
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572-CEA/CNRS, Domaine du CNRS, F-91198, Gif sur Yvette cedex, France

Abstract

Fourteen organic-rich sedimentary layers in the deposits at Quebrada de los Burros, in coastal southern Peru (Tacna department), lie between two debris-flow units, interpreted to result from El Niño events, at 8980 cal yr B.P. and after 3380 cal yr B.P., respectively. The accumulation of the fine-grained and low-energy sediments of this deposit during the mid-Holocene is incompatible with the occurrence of El Niño events in this region, as these would produce catastrophic flood deposits. The occurrence of organic-rich sediments and evidence of an enhancement of upwelling strength at this time imply the existence of a permanent water supply resulting from an increased condensation of fog at mid-altitudes. These results suggest a lower intensity and perhaps, a lower frequency of occurrence of the El Niño phenomenon during the mid-Holocene. It is precisely during this period that the most important human settlements are found at this site, probably indicating the presence of reliable supply of fresh water. The chronologies for wetlands in the central south altiplano are out of phase with those indicating increased soil moisture episodes on the coast, implying a long-term difference in climate between these two regions.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Délibrias, G. (1985). Le carbone 14. Roth, E., Poty, B. Méthodes de datation par les phénomènes nucléaires naturels: Applications. Collection CEA, Masson, Paris., 421458.Google Scholar
DeVries, T.J., Wells, L.E. (1990). Thermally-anomalous Holocene molluscan assemblages from coastal Peru: Evidence for paleogeographic, not climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology. 81, 1132.CrossRefGoogle Scholar
DeVries, T.J., Ortlieb, L., Diaz, A., Wells, L., Hillaire-Marcel, C. (1997). Determining the early history of El Niño. Science. 276, 965966.CrossRefGoogle Scholar
Ellenberg, H. (1959). Über den Wasserhaushalt tropischer Nebelaosen in der Küstenwüste Perus. Rübel, E., Lüdi, W. Bericht über geobotanische Forschungsinstitut. 4774.Google Scholar
Ferreyra, R. (1993). Vegetation records along the Peruvian coast in relation to El Niño phenomenon (in Registro del Fenomeno El Niño y de eventos ENSO en America del Sur). Bulletin Institut Français Etudes Andines. 22, 259266.Google Scholar
Francou, B., Pizarro, L. (1986). El Niño et la sécheresse dans les hautes Andes Centrales: Étude d'une possible corélation. Cahiers d'Outre-Mer. 39, 371390.Google Scholar
Grosjean, M., Geyh, M.A., Messerli, B., Schotterer, U. (1995). Late glacial and early Holocene lake sediments, groundwater formation and climate in the Atacama altiplano 22–24°S. Journal of Paleolimnology. 14, 24122452.Google Scholar
Grosjean, M., Messerli, B., Ammann, C., Geyh, M.A., Graf, K., Jenny, B., Kammer, K., Nunez, L., Schotterer, U., Schreier, H., Valero, B., Vuille, M. (1995). Holocene environmental changes in the Atacama altiplano and palaeoclimate implication. Bulletin Institut Français Etudes Andines. 24, 585594.Google Scholar
Grosjean, M., Nunez, L., Cartajena, I., Messerli, B. (1997). Mid-Holocene climate and culture change in the Atacama Desert, Northern Chile. Quaternary Research. 48, 239246.Google Scholar
Grosjean, M., Valero-Garcés, B.L., Geyh, M.A., Messerli, B., Schotterer, U., Schreier, H., Kelts, K. (1997). Mid and late Holocene limnogeology of Laguna del Negro Francisco, northern Chile, and its palaeoclimatic implications. The Holocene. 7, 151159.Google Scholar
Keefer, D.K., de France, S.D., Moseley, M.E., Richardson, J.B. III, Satterlee, D.R., Day-Lewis, A. (1998). Early maritime economy and El Niño events at Quebrada Tacahuay, Peru. Science. 281, 18331835.Google Scholar
Lavallée, D, Julien, M, Béarez, P, Usselmann, P, Fontugne, M and Bolaños, A. in press, Pescadores-recolectores arcaicos del extremo-sur peruano. Excavaciones en la Quebrada de los Burros (Tacna, Perù): Primeros resultados 1995–1997, Bulletin Institut Français Etudes Andines.Google Scholar
Martin, L., Fournier, M., Mourgiart, P., Sifeddine, A., Turq, B., Absy, M.L., Flexor, J.M. (1993). Southern Oscillation signal in South American Palaeoclimatic data of the last 7000 year. Quaternary Research. 39, 338346.Google Scholar
Ortlieb, L. (1995). Eventos El Niño y episodios lluviosos en el desierto de Atacama: El registro de los ultimos dos siglos (in Eaux glaciers & changements climatiques dans les Andes tropicales). Bulletin Institut Français Etudes Andines. 24, 519537.CrossRefGoogle Scholar
Ortlieb, L., Fournier, M., Macharé, J. (1993). Beach ridge series in Northern Peru: Chronology, correlation and relationship with major late Holocene El Niño events. Bulletin Institut Français Etudes Andines. 22, 191212.CrossRefGoogle Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.E., Abbott, M.B., Enfield, D.B., Newman, J.H. (1999). A 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science. 283, 516520.CrossRefGoogle ScholarPubMed
Sandweiss, D.H., Maasch, K.A., Anderson, D.G. (1999). Transitions in the Mid-Holocene. Science. 283, 499500.Google Scholar
Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., Maasch, K.A. (1996). Geoarcheological evidence from Peru for a 5,000 year B.P. onset of El Niño. Science. 273, 15311533.Google Scholar
Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., Maasch, K.A. (1997). Determining the early history of El Niño. Science. 276, 966967.Google Scholar
Schader, H., Sorknes, R. (1991). Peruvian coastal upwelling: Late Quaternary productivity changes revealed by diatoms. Marine Geology. 97, 233249.CrossRefGoogle Scholar
Servant, M., Fournier, M., Argollo, J., Servant-Vildary, S., Silvestre, F., Wirrmann, D., Ybert, J.P. (1995). La dernière transition glaciaire/interglaciaire des Andes tropicales sud (Bolivie) d'après l'étude des variations des niveaux lacustres et des fluctuations glaciaires. Comptes Rendus de l'Académie des Sciences Paris, Série IIa. 320, 729739.Google Scholar
Stuiver, M., Brazuinas, T.F. (1993). Modelling atmospheric 14C influences and 14C ages of marine samples to 10,000 B.C. Radiocarbon. 35, 137189.Google Scholar
Stuiver, M., Reimer, P. (1993). Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon. 35, 215230.CrossRefGoogle Scholar
Vita-Finzi, C., Roberts, N. (1984). Selective leaching of shells for 14C dating. Radiocarbon. 26, 5458.Google Scholar
Wells, L.E. (1987). An alluvial record of El Niño events from northern coastal Peru. Journal of Geophysical Research. 92, 14,46314,470.CrossRefGoogle Scholar
Wells, L.E. (1990). Holocene history of the El Niño phenomenon as recorded in flood sediments of northern coastal Peru. Geology. 18, 11341137.Google Scholar
Wells, L.E., Noller, J.S. (1997). Determining the early history of El Niño. Science. 276, 966.Google Scholar